版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖南省益阳市桃江县高一数学第一学期期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数满足∶当时,,当时,,若,且,设,则()A.没有最小值 B.的最小值为C.的最小值为 D.的最小值为2.下列命题中正确的是()A.若,则 B.若,则C.若,则 D.若,则3.将函数的图象上各点的纵坐标不变,横坐标伸长到原来的3倍,再向右平移个单位,得到的函数的一个对称中心是A. B.C. D.4.设函数的最小正周期为,且在内恰有3个零点,则的取值范围是()A. B.C. D.5.已知集合,,则集合()A. B.C. D.6.已知光线每通过一块特制玻璃板,强度要减弱,要使通过玻璃板光线强度减弱到原来的以下,则至少需要重叠玻璃版块数为(参考数据:)()A.4 B.5C.6 D.77.过点(1,0)且与直线x-2y-2=0平行的直线方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=08.下列各式中成立的是A. B.C. D.9.如图,正方形的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是()A. B.8C.6 D.10.某校早上6:30开始跑操,假设该校学生小张与小王在早上6:00~6:30之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张与小王至少相差5分钟到校的概率为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设定义在上的函数同时满足以下条件:①;②;③当时,,则=________.12.若函数的图象过点,则函数的图象一定经过点________.13.若函数的定义域为[-2,2],则函数的定义域为______14.已知幂函数的图像过点,则的解析式为=__________15.已知函数f(x)=|sinx|﹣cosx,给出以下四个命题:①f(x)的图象关于y轴对称;②f(x)在[﹣π,0]上是减函数;③f(x)是周期函数;④f(x)在[﹣π,π]上恰有三个零点其中真命题的序号是_____.(请写出所有真命题的序号)16.已知是定义在上的奇函数,当时,,则的值为________________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数.(1)若,且均为正实数,求的最小值,并确定此时实数的值;(2)若满足在上恒成立,求实数的取值范围.18.记函数的定义域为集合,函数的定义域为集合(Ⅰ)求集合;(Ⅱ)若,求实数的取值范围19.(1)已知是奇函数,求的值;(2)画出函数图象,并利用图象回答:为何值时,方程无解?有一解?有两解.20.计算:(1).(2)21.已知扇形的圆心角是,半径为,弧长为.(1)若,,求扇形的弧长;(2)若扇形的周长为,当扇形的圆心角为多少弧度时,这个扇形的面积最大,并求出此时扇形面积的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据已知条件,首先利用表示出,然后根据已知条件求出的取值范围,最后利用一元二次函数并结合的取值范围即可求解.【详解】∵且,则,且,∴,即由,∴,又∵,∴当时,,当时,,故有最小值.故选:B.2、C【解析】分析】利用不等式性质逐一判断即可.【详解】选项A中,若,,则,若,,则,故错误;选项B中,取,满足,但,故错误;选项C中,若,则两边平方即得,故正确;选项D中,取,满足,但,故错误.故选:C.【点睛】本题考查了利用不等式性质判断大小,属于基础题.3、A【解析】由函数的图象上各点的纵坐标不变,横坐标伸长到原来的3倍得到,向右平移个单位得到,将代入得,所以函数的一个对称中心是,故选A4、D【解析】根据周期求出,结合的范围及,得到,把看做一个整体,研究在的零点,结合的零点个数,最终列出关于的不等式组,求得的取值范围【详解】因为,所以.由,得.当时,,又,则因为在上的零点为,,,,且在内恰有3个零点,所以或解得.故选:D5、B【解析】解不等式求得集合、,由此求得.【详解】,,所以.故选:B6、D【解析】设至少需要经过这样的块玻璃板,则,即,两边同时取以10为底的对数,可得,进而求解即可,需注意【详解】设至少需要经过这样的块玻璃板,则,即,所以,即,因为,所以,故选:D【点睛】本题考查利用对数的运算性质求解,考查指数函数的实际应用7、A【解析】设出直线方程,利用待定系数法得到结果.【详解】设与直线平行的直线方程为,将点代入直线方程可得,解得则所求直线方程为.故A正确【点睛】本题主要考查两直线的平行问题,属容易题.两直线平行倾斜角相等,所以斜率相等或均不存在.所以与直线平行的直线方程可设为8、D【解析】根据指数运算法则分别验证各个选项即可得到结果.【详解】中,中,,中,;且等式不满足指数运算法则,错误;中,,错误;中,,则,错误;中,,正确.故选:【点睛】本题考查指数运算法则的应用,属于基础题.9、B【解析】根据斜二测画法得出原图形四边形的性质,然后可计算周长【详解】由题意,所以原平面图形四边形中,,,,所以,所以四边形的周长为:故选:B10、A【解析】设小张与小王的到校时间分别为6:00后第分钟,第分钟,由题意可画出图形,利用几何概型中面积比即可求解.【详解】设小张与小王的到校时间分别为6:00后第分钟,第分钟,可以看成平面中的点试验的全部结果所构成的区域为是一个正方形区域,对应的面积,则小张与小王至少相差5分钟到校事件(如阴影部分)则符合题意的区域,由几何概型可知小张与小王至少相差5分钟到校的概率为.故选:A【点睛】本题考查了几何概率模型,解题的关键是画出满足条件的区域,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用周期性和奇偶性,直接将的值转化到上的函数值,再利用解析式计算,即可求出结果【详解】依题意知:函数为奇函数且周期为2,则,,即.【点睛】本题主要考查函数性质——奇偶性和周期性的应用,以及已知解析式,求函数值,同时,考查了转化思想的应用12、【解析】函数的图象可以看作的图象先关于轴对称,再向右平移4个单位得到,先求出关于轴的对称点,再向右平移4个单位即得.【详解】由题得,函数的图象先关于轴对称,再向右平移个单位得函数,点关于轴的对称点为,向右平移4个单位是,所以函数图象一定经过点.故答案为:.【点睛】本题主要考查函数的平移变换和对称变换,考查了分析能力,属于基础题.13、【解析】∵函数的定义域为[-2,2]∴,∴∴函数的定义域为14、##【解析】根据幂函数的定义设函数解析式,将点的坐标代入求解即可.【详解】由题意知,设幂函数的解析式为为常数),则,解得,所以.故答案为:15、①③【解析】求函数的奇偶性即可判断①;结合取值范围,可去绝对值号,结合辅助角公式求出函数的解析式,从而可求单调性即可判断②;由f(x+2π)=f(x)可判断③;求[﹣π,0]上的解析式,从而可求出该区间上的零点,结合函数的奇偶性即可判断[﹣π,π]上零点个数.【详解】解:对于①,函数f(x)=sinx﹣cosx的定义域为R,且满足f(﹣x)=f(x),所以f(x)是定义域在R上的偶函数,其图象关于y轴对称,①为真命题;对于②,当x∈[﹣π,0]时,sinx≤0,fx对于y=2sinx+π4,x+对于③,因为f(x+2π)=|sin(x+2π)|﹣cos(x+2π)=|sinx|﹣cosx=f(x),函数f(x)是周期为2π的周期函数,③为真命题;对于④,当x∈[﹣π,0]时,sinx≤0,fx=-sinx+cosx=-2sinx+π4,且x+π4∈-故答案为:①③.【点睛】关键点睛:在判断命题②④时,关键是结合自变量的取值范围去掉绝对值号,结合辅助角公式求出函数的解析式,再结合正弦函数的性质进行判断.16、-7【解析】由已知是定义在上的奇函数,当时,,所以,则=点睛:利用函数奇偶性求有关参数问题时,要灵活选用奇偶性的常用结论进行处理,可起到事半功倍的效果:①若奇函数在处有定义,则;②奇函数+奇函数=奇函数,偶函数+偶函数=偶函数,奇函数奇函数=偶函数偶函数=偶函数;③特殊值验证法三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)的最小值为3,此时;(2)【解析】(1)由可得,则由结合基本不等式即可求出;(2)不等式恒成立等价于对恒成立,利用判别式可得对恒成立,再利用判别式即可求出的范围.【详解】(1),则,,当且仅当,即时等号成立,的最小值为3,此时;(2),则,即对恒成立,则,即对恒成立,则,解得.【点睛】本题考查基本不等式的应用,考查一元二次不等式的恒成立问题,属于中档题.18、(Ⅰ);(Ⅱ)【解析】(1)根据根式有意义的条件,并结合指数函数的性质解不等式得到集合A;(2)先求解集合,由得到A是B的子集,根据集合包含关系列出关于a的不等式,求得a的取值范围【详解】(Ⅰ)由已知得:(Ⅱ)由∵,∴或∵,∴,∴19、(1);(2)时,无解;时,有两个解;或时,有一个解.【解析】(1)由奇函数的定义,,代入即可得出结果.(2)画出函数图象,结合函数图象可得出结果.【详解】(1)为奇函数,,所以(2)函数图象如图,可知时,无解;时,有两个解;或时,有一个解【点睛】本题考查了奇函数的定义,考查了运算求解能力和画图能力,数形结合思想,属于基础题目.20、(1)20(2)-2【解析】根据指数运算公式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 养老院老人访客管理制度
- 养老院老人生活娱乐活动组织人员管理制度
- 养老院老人康复理疗制度
- 养老院绿化环境维护制度
- 养老院员工培训与考核制度
- 公共交通运营成本控制制度
- 摄影技术与技巧
- 2026年志愿服务管理知识考试题含答案
- 2026年跨境电商促销活动设计逻辑测试题目及答案
- 工艺技术创新大赛
- 标准维修维护保养服务合同
- 专题08解题技巧专题:圆中辅助线的作法压轴题三种模型全攻略(原卷版+解析)
- GB/T 4706.9-2024家用和类似用途电器的安全第9部分:剃须刀、电理发剪及类似器具的特殊要求
- 2019年急性脑梗死出血转化专家共识解读
- 电力工程有限公司管理制度制度范本
- 科研伦理与学术规范-课后作业答案
- 安全防范系统安装维护员题库
- mbd技术体系在航空制造中的应用
- 苗木育苗方式
- 通信原理-脉冲编码调制(PCM)
- 省直单位公费医疗管理办法实施细则
评论
0/150
提交评论