2026届鄂尔多斯市重点中学数学高一上期末复习检测模拟试题含解析_第1页
2026届鄂尔多斯市重点中学数学高一上期末复习检测模拟试题含解析_第2页
2026届鄂尔多斯市重点中学数学高一上期末复习检测模拟试题含解析_第3页
2026届鄂尔多斯市重点中学数学高一上期末复习检测模拟试题含解析_第4页
2026届鄂尔多斯市重点中学数学高一上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届鄂尔多斯市重点中学数学高一上期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若全集,且,则()A.或 B.或C. D.或.2.若方程x2+2x+m2+3m=mcos(x+1)+7有且仅有1个实数根,则实数m的值为()A.2 B.-2C.4 D.-43.已知函数,若f(a)=10,则a的值是()A.-3或5 B.3或-3C.-3 D.3或-3或54.已知扇形的面积为,扇形圆心角的弧度是,则扇形的周长为()A. B.C. D.5.直线与直线互相垂直,则这两条直线的交点坐标为()A. B.C. D.6.在空间直角坐标系中,点关于平面的对称点是A. B.C. D.7.若点在角的终边上,则的值为A. B.C. D.8.设函数,其中,,,都是非零常数,且满足,则()A. B.C. D.9.函数的定义域为()A B.C. D.10.角终边经过点,那么()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,且,则的最小值为____________.12.若角的终边经过点,则___________.13.函数的定义域是__________.14.已知,,,则的最大值为___________.15.已知,,则________.(用m,n表示)16.设、、为的三个内角,则下列关系式中恒成立的是__________(填写序号)①;②;③三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.解下列关于的不等式;(1);(2).18.已知函数.(1)判断并证明函数的奇偶性;(2)判断当时函数的单调性,并用定义证明.19.已知函数,.(1)解方程;(2)判断在上的单调性,并用定义加以证明;(3)若不等式对恒成立,求的取值范围.20.已知二次函数满足条件和,(1)求;(2)求在区间()上的最小值21.(1)计算:;(2)已知,,求证:

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据集合补集的概念及运算,准确计算,即可求解.【详解】由题意,全集,且,根据集合补集的概念及运算,可得或.故选:D.2、A【解析】令,由对称轴为,可得,解出,并验证即可.【详解】依题意,有且仅有1个实数根.令,对称轴为.所以,解得或.当时,,易知是连续函数,又,,所以在上也必有零点,此时不止有一个零点,故不合题意;当时,,此时只有一个零点,故符合题意.综上,.故选:A【点睛】关键点点睛:构造函数,求出的对称轴,利用对称的性质得出.3、A【解析】根据分段函数的解析式,分两种情况讨论分别求得或.【详解】若,则舍去),若,则,综上可得,或,故选A.【点睛】本题主要考查分段函数的解析式、分段函数求自变量,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.4、A【解析】根据扇形的面积公式和弧长的计算公式,求得弧长和半径,即可求得结果.【详解】设扇形的半径为,弧长为.由题意:,解得,所以扇形的周长为,故选:A.【点睛】本题考查扇形的弧长和面积公式,属基础题.5、B【解析】时,直线分别化为:,此时两条直线不垂直.时,利用两条直线垂直可得:,解得.联立方程解出即可得出.【详解】时,直线分别化为:,此时两条直线不垂直.时,由两条直线垂直可得:,解得.综上可得:.联立,解得,.∴这两条直线的交点坐标为.故选:【点睛】本题考查了直线相互垂直、分类讨论方法、方程的解法,考查了推理能力与计算能力,属于基础题.6、C【解析】关于平面对称的点坐标相反,另两个坐标相同,因此结论为7、A【解析】根据题意,确定角的终边上点的坐标,再利用三角函数定义,即可求解,得到答案【详解】由题意,点在角的终边上,即,则,由三角函数的定义,可得故选A【点睛】本题主要考查了三角函数的定义的应用,其中解答中确定出角的终边上点的坐标,利用三角函数的定义求解是解答的关键,着重考查了运算与求解能力,属于基础题.8、C【解析】代入后根据诱导公式即可求出答案【详解】解:由题,∴,∴,故选:C【点睛】本题主要考查三角函数的诱导公式的应用,属于基础题9、D【解析】由函数解析式可得关于自变量的不等式组,其解集为函数的定义域.【详解】由题设可得:,故,故选:D.10、C【解析】利用任意角的三角函数的定义,求得和的值,可得的值【详解】解:角终边上一点,,,则,故选:二、填空题:本大题共6小题,每小题5分,共30分。11、##2.5【解析】将变形为,利用基本不等式求得答案.【详解】由题意得:,当且仅当时取得等号,故答案为:12、【解析】根据三角函数的定义求出和的值,再由正弦的二倍角公式即可求解.【详解】因为角的终边经过点,所以,,则,所以,,所以,故答案为:.13、{|且}【解析】根据函数,由求解.【详解】因为函数,所以,解得,所以函数的定义域是{|且},故答案为:{|且}14、【解析】由题知,进而令,,再结合基本不等式求解即可.【详解】解:,当时取等,所以,故令,则,所以,当时,等号成立.所以的最大值为故答案为:15、【解析】根据指数式与对数式的互化,以及对数的运算性质,准确运算,即可求解.【详解】因为,,所以,,所以,可得.故答案为:16、②、③【解析】因为是的内角,故,,从而,,,故选②、③.点睛:三角形中各角的三角函数关系,应注意利用这个结论.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据一元二次不等式的解法即可得出答案;(1)根据一元二次不等式的解法即可得出答案.【小问1详解】解:不等式可化为,解得,所以不等式的解集为;【小问2详解】解:不等式可化为,解得或,所以不等式的解集为.18、(1)函数为奇函数,证明见解析(2)在上为增函数,证明见解析【解析】(1)先判断奇偶性,根据奇函数的定义证明即可;(2)先判断单调性,根据函数单调性的定义法证明即可.【小问1详解】函数为奇函数.证明如下:∵定义域为R,又,∴为奇函数.【小问2详解】函数在为单调增函数.证明如下:任取,则∵,∴,,∴,即,故在上为增函数.19、(1)或(2)在上单调递减,在上单调递增,证明见解析(3)【解析】(1)由已知得,解方程即可;(2)任取,且,则,分和讨论可得答案;(3)将不等式对恒成立问题转化为,的最小值问题,求出的最小值即可得的取值范围.【详解】(1)由已知.所以,得或,所以或;(2)任取,且,则因为,且,所以,.当时,恒成立,,即;当时,恒成立,,即.故在上单调递减,在上单调递增;(3),,令,.由(2)知,在上单调递减,在上单调递增,所以,所以,即,故的取值范围是.【点睛】本题考查函数单调性的判断和证明,考查函数不等式恒成立问题,转化为最值问题即可,是中档题.20、(1);(2).【解析】(1)由二次函数可设,再利用进行化简分析即可.(2)由(1)可知,对称轴为,通过讨论的范围,根据函数的单调性,求出函数的最小值.【详解】(1)由二次函数可设,因为,故,即,即,故,即,故;(2)函数的对称轴为,则当,即时,在单调递减,;当,即时,;当时,在单调递增,,.【点睛】本题主要考查二次函数的解析式求解以及二次函数最值的问题等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论