版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省芜湖市中小学校2026届高一数学第一学期期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.生物体死亡后,它机体内原有的碳14含量会按确定的比率衰减(称为衰减率),与死亡年数之间的函数关系式为(其中为常数),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.若2021年某遗址文物出土时碳14的残余量约占原始含量的,则可推断该文物属于()参考数据:参考时间轴:A.宋 B.唐C.汉 D.战国2.已知,则、、的大小关系为()A. B.C. D.3.已知,是第三象限角,则的值为()A. B.C. D.4.若a>0,且a≠1,x∈R,y∈R,且xy>0,则下列各式不恒成立的是()①logax2=2logax;②logax2=2loga|x|;③loga(xy)=logax+logay;④loga(xy)=loga|x|+loga|y|.A.②④ B.①③C.①④ D.②③5.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与最接近的是(参考数据:lg3≈048)A.1033 B.1053C.1073 D.10936.用二分法求方程的近似解,求得的部分函数值数据如下表所示:121.51.6251.751.8751.8125-63-2.625-1.459-0.141.34180.5793则当精确度为0.1时,方程的近似解可取为A. B.C. D.7.集合的真子集的个数是()A. B.C. D.8.下列四组函数中,定义域相同的一组是()A.和 B.和C.和 D.和9.已知点,向量,若,则点的坐标为()A. B.C. D.10.在平面直角坐标系中,角与角项点都在坐标原点,始边都与x轴的非负半轴重合,它们的终边关于y轴对称,若,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.梅州城区某公园有一座摩天轮,其旋转半径30米,最高点距离地面70米,匀速运行一周大约18分钟.某人在最低点的位置坐上摩天轮,则第12分钟时,他距地面大约为___________米.12.若关于x的不等式对一切实数x恒成立,则实数k的取值范围是___________.13.已知函数,若,使得,则实数a的取值范围是___________.14.已知函数,则的值为_________.15.函数的定义域为_____________.16.已知.若实数m满足,则m的取值范围是__三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆C经过点,两点,且圆心在直线上(1)求圆C的方程;(2)已知、是过点且互相垂直的两条直线,且与C交于A,B两点,与C交于P、Q两点,求四边形APBQ面积的最大值18.对于等式,如果将视为自变量,视为常数,为关于(即)的函数,记为,那么,是幂函数;如果将视为常数,视为自变量,为关于(即)的函数,记为,那么,是指数函数;如果将视为常数,视为自变量为关于(即)的函数,记为,那么,是对数函数.事实上,由这个等式还可以得到更多的函数模型.例如,如果为常数(为自然对数的底数),将视为自变量,则为的函数,记为(1)试将表示成的函数;(2)函数的性质通常指函数的定义域、值域、单调性、奇偶性等,请根据你学习到的函数知识直接写出该函数的性质,不必证明.并尝试在所给坐标系中画出函数的图象19.已知函数且为自然对数的底数).(1)判断函数的奇偶性并证明(2)证明函数在是增函数(3)若不等式对一切恒成立,求满足条件的实数的取值范围20.计算(1)(2)21.已知函数.(1)判断函数在R上的单调性,并用单调性的定义证明;(2)判断函数的奇偶性,并证明;(3)若恒成立,求实数k的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据给定条件可得函数关系,取即可计算得解.【详解】依题意,当时,,而与死亡年数之间的函数关系式为,则有,解得,于是得,当时,,于是得:,解得,由得,对应朝代为战国,所以可推断该文物属于战国.故选:D2、A【解析】借助中间量比较大小即可.【详解】解:因为,所以.故选:A3、A【解析】利用同角三角函数的平方关系求出的值,然后利用两角差的余弦公式求出的值.【详解】为第三象限角,所以,,因此,.故选:A.【点睛】本题考查利用两角差的余弦公式求值,在利用同角三角函数基本关系求值时,要结合角的取值范围确定所求三角函数值的符号,考查计算能力,属于基础题.4、B【解析】对于①中,若x<0,则不成立;③中,若x<0,y<0也不成立,②④根据运算性质可得均正确.【详解】∵xy>0,∴①中,若x<0,则不成立;③中,若x<0,y<0也不成立,②logax2=2loga|x|,④loga(xy)=loga|x|+loga|y|,根据对数运算性质得两个都正确;故选:B.5、D【解析】设,两边取对数,,所以,即最接近,故选D.【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令,并想到两边同时取对数进行求解,对数运算公式包含,,.6、C【解析】利用零点存在定理和精确度可判断出方程的近似解.【详解】根据表中数据可知,,由精确度为可知,,故方程的一个近似解为,选C.【点睛】不可解方程的近似解应该通过零点存在定理来寻找,零点的寻找依据二分法(即每次取区间的中点,把零点位置精确到原来区间的一半内),最后依据精确度四舍五入,如果最终零点所在区间的端点的近似值相同,则近似值即为所求的近似解.7、B【解析】确定集合的元素个数,利用集合真子集个数公式可求得结果.【详解】集合的元素个数为,故集合的真子集个数为.故选:B.8、C【解析】根据根式、分式、对数的性质求各函数的定义域即可.【详解】A:定义域为,定义域为,不合题设;B:定义域为,定义域为,不合题设;C:、定义域均为,符合题设;D:定义域为,定义域为,不合题设;故选:C.9、B【解析】设点坐标为,利用向量的坐标运算建立方程组,解之可得选项.【详解】设点坐标为,,A,所以,又,,所以.解得,解得点坐标为.故选:B.10、A【解析】利用终边相同的角和诱导公式求解.【详解】因为角与角的终边关于y轴对称,所以,所以,故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、55【解析】建立平面直角坐标系,第分钟时所在位置的高度为,设出其三角函数的表达式,由题意,得出其周期,求出解析式,然后将代入,可得答案.【详解】如图设为地面,圆为摩天轮,其旋转半径30米,最高点距离地面70米.则摩天轮的最低点离地面10米,即以所在直线为轴,所在直线为轴,建立平面直角坐标系.某人在最低点的位置坐上摩天轮,则第分钟时所在位置的高度为则由题意,,则,所以当时,故答案为:5512、【解析】根据一元二次不等式与二次函数的关系,可知只需判别式,利用所得不等式求得结果.【详解】不等式对一切实数x恒成立,,解得:故答案为:.13、【解析】将“对,使得,”转化为,再根据二次函数的性质和指数函数的单调性求得最值代入即可解得结果.【详解】当时,,∴当时,,当时,为增函数,所以时,取得最大值,∵对,使得,∴,∴,解得.故答案为:.14、【解析】,填.15、【解析】根据偶次根式和分式有意义的要求可得不等式组,解不等式组可求得结果.【详解】由题意得:,解得:且,即的定义域为.故答案为:.16、【解析】由题意可得,进而解不含参数的一元二次不等式即可求出结果.【详解】由题意可知,即,所以,因此,故答案:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)7【解析】(1)根据题意,求出MN的中垂线的方程为,分析可得圆心为直线和的交点,联立直线的方程可得圆心的坐标,进而求出圆的半径,由圆的标准方程可得答案;(2)根据题意,分2种情况讨论:,当直线,,其中一条直线斜率为0时,另一条斜率不存在,分析可得四边形APBQ的面积;,当直线,斜率均存在时,设直线的斜率为k,则方程的方程为,用k表示四边形APBQ的面积,由二次函数分析其最值,综合即可得答案【小问1详解】根据题意,点,,则线段MN的中垂线方程为,圆心为直线和的交点,则有,解得,所以圆C的圆心坐标为;半径,所以圆C的方程为.【小问2详解】根据题意,已知、是互相垂直的两条直线,分2种情况讨论:,当直线,,其中一条直线斜率为0时.另一条斜率不存在不妨令的斜率为0,此时,四边形APBQ的面积,当直线,斜率均存在时,设直线的斜率为则其方程为,圆心到直线的距离为,于是,又的方程为同理,所以四边形APBQ的面积,当且仅当即时,等号成立因为综上所述,四边形APBQ面积的最大值为718、(1),(,)(2)答案见解析【解析】(1)结合对数运算的知识求得.(2)根据的解析式写出的性质,并画出图象.【小问1详解】依题意因为,,两边取以为底的对数得,所以将y表示为x的函数,则,(,),即,(,);【小问2详解】函数性质:函数的定义域为,函数值域,函数是非奇非偶函数,函数的在上单调递减,在上单调递减函数的图象:19、(1)见解析;(2)见解析;(3).【解析】(1)定义域为,关于原点对称,又,为奇函数(2)任取,,且,则===,又在上为增函数且,,,,在上是增函数(3)由(1)知在上为奇函数且单调递增,由得由题意得,即恒成立,又.综上得的取值范围是点睛:本题是一道关于符合函数的题目,总体方法是掌握函数奇偶性和单调性的知识,属于中档题.在证明函数单调性时可以运用定义法证明,在解答函数中的不等式时,要依据函数的单调性,比较两数大小,含有参量时要分离参量计算最值20、(1)6(2)【解析】(1)将根式转化为分数指数幂,然后根据幂的运算性质即可化简求值;(2)利用对数的运算性质即可求解.【小问1详解】解:;【小问2详解】解:.21、(1)在R上的单调递增,证明见解析;(2)是奇函数,证明见解析;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职教育学(班级管理基础)试题及答案
- 2025年中职(护理)无菌操作试题及答案
- 2025年大学环境保护(环境影响评价)试题及答案
- 2025年大学美术类(素描基础训练)试题及答案
- 2025年高职农业机械应用技术(农机故障诊断)试题及答案
- 2025年中职能源动力类(能源基础常识)试题及答案
- 2025年大学健康运营管理(管理技术)试题及答案
- 2025年大学大三(水利工程管理)水库调度运行综合测试试题及答案
- 2025年高职第二学年(房地产经营与管理)房产租赁专项测试试题及答案
- 2025年中职(烹饪工艺与营养)中式面点制作基础试题及答案
- GB/T 43869-2024船舶交通管理系统监视雷达通用技术要求
- 药店全年主题活动方案设计
- 病媒生物防制服务外包 投标方案(技术方案)
- 年产6万吨环氧树脂工艺设计
- 轨道线路养护维修作业-改道作业
- 北师大版五年级数学上册第七单元《可能性》教案
- 2023-2024学年上海市闵行区四上数学期末综合测试试题含答案
- 解除劳动合同证明电子版(6篇)
- 呼吸科规培疑难病例讨论
- 有关中国居民死亡态度的调查报告
- 核对稿100和200单元概述
评论
0/150
提交评论