江苏省南通市通州区、海安县2026届数学高二上期末质量跟踪监视试题含解析_第1页
江苏省南通市通州区、海安县2026届数学高二上期末质量跟踪监视试题含解析_第2页
江苏省南通市通州区、海安县2026届数学高二上期末质量跟踪监视试题含解析_第3页
江苏省南通市通州区、海安县2026届数学高二上期末质量跟踪监视试题含解析_第4页
江苏省南通市通州区、海安县2026届数学高二上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南通市通州区、海安县2026届数学高二上期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若直线与平行,则实数m等于()A.0 B.1C.4 D.0或42.设异面直线、的方向向量分别为,,则异面直线与所成角的大小为()A. B.C. D.3.已知数列是各项均为正数的等比数列,若,则公比()A. B.2C.2或 D.44.曲线的一个焦点F到两条渐近线的垂线段分别为FA,FB,O为坐标原点,若四边形OAFB是菱形,则双曲线C的离心率等于()A. B.C.2 D.5.已知数列为等比数列,则“,”是“为递减数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知抛物线上的一点,则点M到抛物线焦点F的距离等于()A.6 B.5C.4 D.27.已知双曲线C:的渐近线方程是,则m=()A.3 B.6C.9 D.8.数列的通项公式是()A. B.C. D.9.已知点A、是抛物线:上的两点,且线段过抛物线的焦点,若的中点到轴的距离为3,则()A.3 B.4C.6 D.810.如图,已知二面角平面角的大小为,其棱上有、两点,、分别在这个二面角的两个半平面内,且都与垂直.已知,,则()A. B.C. D.11.曲线与曲线的A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等12.已知数列满足,则()A. B.1C.2 D.4二、填空题:本题共4小题,每小题5分,共20分。13.某足球俱乐部选拔青少年队员,每人要进行3项测试.甲队员每项测试通过的概率均为,且不同测试之间相互独立,设他通过的测试项目数为X,则_________14.函数满足,且,则的最小值为___________.15.设函数,,对任意的,都有成立,则实数的取值范围是______16.已知函数,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求的单调递增区间;(2)求在的最大值.18.(12分)已知椭圆的左、右焦点分别为,且,直线过与交于两点,的周长为8(1)求的方程;(2)过作直线交于两点,且向量与方向相同,求四边形面积的取值范围19.(12分)如图,在直三棱柱中,,,.M为侧棱的中点,连接,,CM.(1)证明:AC平面;(2)证明:平面;(3)求二面角的大小.20.(12分)已知数列满足,(1)证明是等比数列,(2)求数列的前项和21.(12分)已知椭圆的离心率为,点在椭圆上,直线与交于,两点(1)求椭圆的方程及焦点坐标;(2)若线段的垂直平分线经过点,求的取值范围22.(10分)已知数列的首项,,,.(1)证明:为等比数列;(2)求数列的前项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由两条直线平行的充要条件即可求解.【详解】解:因为直线与平行,所以,解得,故选:A.2、C【解析】利用空间向量夹角的公式直接求解.【详解】,,,.由异面直线所成角的范围为,故异面直线与所成的角为.故选:C3、B【解析】由两式相除即可求公比.【详解】设等比数列的公比为q,∵其各项均为正数,故q>0,∵,∴,又∵,∴=4,则q=2.故选:B.4、A【解析】依题意可得为正方形,即可得到,从而得到双曲线的渐近线为,即可求出双曲线的离心率;【详解】解:依题意,,且四边形为菱形,所以为正方形,所以,即双曲线的渐近线为,即,所以;故选:A5、A【解析】本题可依次判断“,”是否是“为递减数列”的充分条件以及必要条件,即可得出结果.【详解】若等比数列满足、,则数列为递减数列,故“,”是“为递减数列”的充分条件,因为若等比数列满足、,则数列也是递减数列,所以“,”不是“为递减数列”的必要条件,综上所述,“,”是“为递减数列”的充分不必要条件,故选:A.【点睛】本题考查充分条件以及必要条件的判定,考查等比数列以及递减数列的相关性质,体现了基础性和综合性,考查推理能力,是简单题.6、B【解析】将点代入抛物线方程求出,再由抛物线的焦半径公式可得答案.详解】将点代入抛物线方程可得,解得则故选:B7、C【解析】根据双曲线的渐近线求得的值.【详解】依题意可知,双曲线的渐近线为,所以.故选:C8、C【解析】根据数列前几项,归纳猜想出数列的通项公式.【详解】依题意,数列的前几项为:;;;……则其通项公式.故选C.【点睛】本小题主要考查归纳推理,考查数列通项公式的猜想,属于基础题.9、D【解析】直接根据抛物线焦点弦长公式以及中点坐标公式求结果【详解】设,,则的中点到轴的距离为,则故选:D10、C【解析】以、为邻边作平行四边形,连接,计算出、的长,证明出,利用勾股定理可求得的长.【详解】如下图所示,以、为邻边作平行四边形,连接,因为,,则,又因为,,,故二面角的平面角为,因为四边形为平行四边形,则,,因为,故为等边三角形,则,,则,,,故平面,因为平面,则,故.故选:C.11、D【解析】分别求出两椭圆的长轴长、短轴长、离心率、焦距,即可判断【详解】解:曲线表示焦点在轴上,长轴长10,短轴长为6,离心率为,焦距为8曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为8对照选项,则正确故选:【点睛】本题考查椭圆的方程和性质,考查运算能力,属于基础题12、B【解析】根据递推式以及迭代即可.【详解】由,得,,,,,,.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据二项分布的方差公式即可求出【详解】因为,所以故答案为:14、6【解析】化简得出,由化简后根据均值不等式建立不等式,求解二次不等式即可得解.【详解】,由得:,(当且仅当时取等号),所以的最小值为6.故答案为:615、【解析】首先求得函数在区间上的最大值,然后分离参数,利用导函数求最值即可确定实数的取值范围.【详解】∵在上恒成立,∴当时,取最大值1,∵对任意的,都有成立,∴在上恒成立,即在上恒成立,令,则,,∵在上恒成立,∴在上为减函数,∵当时,,故当时,取最大值1,故,故答案为【点睛】本题考查的知识点是函数恒成立问题,利用导数研究函数的单调性,利用导数研究函数的最值,难度中档16、【解析】根据导数的定义求解即可【详解】由,得,所以,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用两角和的余弦公式以及辅助角公式可得,再由正弦函数单调区间,整体代入即可求解.(2)根据三角函数的单调性即可求解.【小问1详解】,,解得,所以函数的单调递增区间为【小问2详解】由(1),解得函数的单调递减区间为,所以函数在上单调递减,在上单调递增,,,所以函数的最大值为.18、(1);(2).【解析】(1)根据给定条件直接求出半焦距,及长半轴长即可作答.(2)根据给定条件结合椭圆的对称性可得四边形为平行四边形,设出直线l的方程,与椭圆C的方程联立,借助韦达定理、对勾函数性质计算作答.【小问1详解】依题意,椭圆半焦距,由椭圆定义知,的周长,解得,,因此椭圆的方程为.【小问2详解】依题意,直线的斜率不为0,设直线的方程为,,由消去并整理得:,则,,因与方向相同,即,又椭圆是以原点O为对称中心的中心对称图形,于是得,即四边形为平行四边形,其面积,则,令,则,则,显然在上单调递增,则当时,,即,从而可得,所以四边形面积的取值范围为.【点睛】结论点睛:过定点的直线l:y=kx+b交圆锥曲线于点,,则面积;过定点直线l:x=ty+a交圆锥曲线于点,,则面积19、(1)证明见详解;(2)证明见详解;(3)【解析】小问1:由于,根据线面平行判定定理即可证明;小问2:以为原点,分别为轴建立空间坐标系,根据向量垂直关系即可证明;小问3:分别求得平面与平面的法向量,根据向量夹角公式即可求解【小问1详解】在直三棱柱中,,且平面,平面所以AC平面;【小问2详解】因为,故以为原点,分别为轴建立空间坐标系如图所示:则,所以则所以又平面,平面故平面;【小问3详解】由,得,设平面的一个法向量为则得又因为平面的一个法向量为所以所以二面角的大小为20、(1)见解析;(2)【解析】(1)利用定义法证明是一个与n无关的非零常数,从而得出结论;(2)由(1)求出,利用分组求和法求【详解】(1)由得,所以,所以是首项为,公比为的等比数列,,所以,(2)由(1)知的通项公式为;则所以【点睛】本题主要考查等比数列的证明以及分组求和法,属于基础题21、(1),(2)【解析】(1)由题意,列出关于a,b,c的方程组求解即可得答案;(2)设M(x1,y1),N(x2,y2),线段MN的中点(x0,y0),则,作差可得①,又线段MN的垂直平分线过点A(0,1),则②,联立直线MN与椭圆的方程,可得﹣t2+1+4k2>0(*),③,由①②③及(*)式联立即可求解【小问1详解】解:由题意可得,解得,所以椭圆C的方程为,焦点坐标为【小问2详解】解:设M(x1,y1),N(x2,y2),线段MN的中点(x0,y0),因为,所以,即,所以①,因为线段MN的垂直平分线过点A(0,1),所以,即②,联立,得(1+4k2)x2+8ktx+4t2﹣4=0,所以=(8kt)2﹣4(1+4k2)(4t2﹣4)=﹣16t2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论