版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省广州三中2026届数学高二上期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线l:的倾斜角为()A. B.C. D.2.若函数,则()A. B.C.0 D.13.直线l经过两条直线和的交点,且平行于直线,则直线l的方程为()A. B.C. D.4.已知圆与圆外切,则()A. B.C. D.5.已知抛物线x2=4y上有一条长为6的动弦AB,则AB的中点到x轴的最短距离为()A. B.C.1 D.26.若抛物线x=﹣my2的焦点到准线的距离为2,则m=()A.﹣4 B.C. D.±7.已知函数的图象过点,令.记数列的前n项和为,则()A. B.C. D.8.三个实数构成一个等比数列,则圆锥曲线的离心率为()A. B.C.或 D.或9.天文学家卡西尼在研究土星及其卫星的运行规律时发现:同一平面内到两个定点的距离之积为常数的点的轨迹是卡西尼卵形线.在平面直角坐标系中,设定点为,,,点O为坐标原点,动点满足(且为常数),化简得曲线E:.当,时,关于曲线E有下列四个命题:①曲线E既是轴对称图形,又是中心对称图形;②的最大值为;③的最小值为;④面积的最大值为.其中,正确命题的个数为()A.1个 B.2个C.3个 D.4个10.“”是“直线与直线垂直”的A.充分必要条件 B.充分非必要条件C.必要不充分条件 D.既不充分也不必要条件11.直线分别与曲线,交于,两点,则的最小值为()A. B.1C. D.212.已知数列是等差数列,其前n项和为,则下列说法错误的是()A.数列一定是等比数列 B.数列一定是等差数列C.数列一定是等差数列 D.数列可能是常数数列二、填空题:本题共4小题,每小题5分,共20分。13.攒尖是古代中国建筑中屋顶的一种结构形式,依其平面有圆形攒尖、三角攒尖、四角攒尖、八角攒尖.如图属重檐四角攒尖,它的上层轮廓可近似看作一个正四棱锥,若此正四棱锥的侧面积是底面积的2倍,则侧面与底面的夹角为___________14.已知数列的前n项和为,则______15.已知曲线在点处的切线的斜率为,则______16.已知集合,集合,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,(1)若,p且q为真命题,求实数x的取值范围;(2)若p是q的充分条件,求实数m的取值范围18.(12分)在中内角A、B、C所对的边分别为a、b、c,且(1)求角A(2)若,,求的面积19.(12分)已知函数,其中a为正数(1)讨论单调性;(2)求证:20.(12分)在数列中,,点在直线上.(1)求的通项公式;(2)记的前项和为,且,求数列的前项和.21.(12分)设集合(1)若,求;(2)设,若是成立的必要不充分条件,求实数a的取值范围22.(10分)如图,在四棱锥中,底面满足,,底面,且,.(1)证明平面;(2)求平面与平面的夹角.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先求得直线的斜率,由此求得倾斜角.【详解】依题意,直线的斜率为,倾斜角的范围为,则倾斜角为.故选:D.2、A【解析】构造函数,再用积的求导法则求导计算得解.【详解】令,则,求导得:,所以.故选:A3、B【解析】联立已知两条直线方程求出交点,再根据两直线平行则斜率相同求出斜率即可.【详解】由得两直线交点为(-1,0),直线l斜率与相同,为,则直线l方程为y-0=(x+1),即x-2y+1=0.故选:B.4、D【解析】根据两圆外切关系,圆心距离等于半径的和列方程求参数.【详解】由题设,两圆圆心分别为、,半径分别为1、r,∴由外切关系知:,可得.故选:D.5、D【解析】由题意知,抛物线的准线l:y=-1,过A作AA1⊥l于A1,过B作BB1⊥l于B1,设弦AB的中点为M,过M作MM1⊥l于M1.则|MM1|=.|AB|≤|AF|+|BF|(F为抛物线的焦点),即|AF|+|BF|≥6,|AA1|+|BB1|≥6,2|MM1|≥6,|MM1|≥3,故M到x轴的距离d≥2.6、D【解析】把抛物线的方程化为标准方程,由焦点到准线的距离为,即可得到结果,得到答案.【详解】由题意,抛物线,可得,又由抛物线的焦点到准线的距离为2,即,解得.故选D.【点睛】本题主要考查了抛物线的标准方程,以及简单的几何性质的应用,其中解答中熟记抛物线的焦点到准线的距离为是解答的关键,着重考查了推理与计算能力,属于基础题.7、D【解析】由已知条件推导出,.由此利用裂项求和法能求出【详解】解:由,可得,解得,则.∴,故选:【点睛】本题考查了函数的性质、数列的“裂项求和”,考查了推理能力与计算能力,属于中档题8、D【解析】根据三个实数构成一个等比数列,解得,然后分,讨论求解.【详解】因为三个实数构成一个等比数列,所以,解得,当时,方程表示焦点在x轴上的椭圆,所以,所以,当时,方程表示焦点在y轴上的双曲线,所以,所以,故选:D9、D【解析】①:根据轴对称图形、中心对称图形的方程特征进行判断即可;②:结合两点间距离公式、曲线方程特征进行判断即可;③:根据卡西尼卵形线的定义,结合基本不等式进行判断即可;④:根据方程特征,结合三角形面积公式进行判断即可.【详解】当,时,.①:因为以代方程不变,以代方程不变,同时代,以代方程不变,所以曲线E既是轴对称图形,又是中心对称图形,因此本命题正确;②:由,所以有,所以,当时成立,因此本命题正确;③:因为,所以,当且仅当时,取等号,因此本命题正确;④:,因为,所以,的面积为,因此本命题正确,故选:D【点睛】关键点睛:利用方程特征进行求解判断是解题的关键.10、B【解析】先由两直线垂直求出的值,再由充分条件与必要条件的概念,即可得出结果.【详解】因为直线与直线垂直,则,即,解得或;因此由“”能推出“直线与直线垂直”,反之不能推出,所以“”是“直线与直线垂直”的充分非必要条件.故选B【点睛】本题主要考查命题充分不必要条件的判定,熟记充分条件与必要条件的概念,以及两直线垂直的判定条件即可,属于常考题型.11、B【解析】设,,,,得到,用导数法求解.【详解】解:设,,,,则,,,令,则,函数在上单调递减,在上单调递增,时,函数的最小值为1,故选:B12、B【解析】可根据已知条件,设出公差为,选项A,可借助等比数列的定义使用数列是等差数列,来进行判定;选项B,数列,可以取,即可判断;选项C,可设,表示出再进行判断;选项D,可采用换元,令,求得的关系即可判断.【详解】数列是等差数列,设公差为,选项A,数列是等差数列,那么为常数,又,则数列一定是等比数列,所以选项A正确;选项B,当时,数列不存在,故该选项错误;选项C,数列是等差数列,可设(A、B为常数),此时,,则为常数,故数列一定是等差数列,所以该选项正确;选项D,,则,当时,,此时数列可能是常数数列,故该选项正确.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设此四棱锥P-ABCD底面边长为,斜高为,连结AC、BD交于点O,连结OP.则以O为原点,为x、y、z轴正半轴建立空间直角坐标系,用向量法求出侧面与底面夹角.【详解】设此四棱锥P-ABCD底面边长为,斜高为,连结AC、BD交于点O,连结OP.则,,以O为原点,为x、y、z轴正半轴建立空间直角坐标系则,,设平面的法向量为,则,令,则,显然平面的法向量为所以,所以侧面与底面的夹角为故答案为:.14、【解析】先通过裂项相消求出,再代入计算即可.【详解】,则,故.故答案为:3.15、【解析】对求导,根据题设有且,即可得目标式的值.【详解】由题设,且定义域为,则,所以,整理得,又,所以,两边取对数有,得:,即.故答案为:.16、##(-1,2]【解析】根据两集合的并集的含义,即可得答案.【详解】因为集合,集合,所以,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)解一元二次不等式可得命题p,q所对集合,再求交集作答.(2)求出命题q所对集合,再利用集合的包含关系列式计算作答.【小问1详解】解不等式得:,则命题p所对集合,当时,解不等式得:,则命题q所对集合,由p且q为真命题,则,所以实数x的取值范围是.【小问2详解】解不等式得:,则命题q所对集合,因p是q的充分条件,则,于是得,解得,所以实数m的取值范围是.18、(1);(2).【解析】(1)根据正弦定理,结合三角形内角和定理、两角和的正弦公式进行求解即可;(2)根据余弦定理,结合三角形面积公式进行求解即可.【小问1详解】,由正弦定理知,,即又,且.所以,由于.所以;【小问2详解】由余弦定理得:,又,所以所以.19、(1)答案见解析(2)证明见解析【解析】(1)求解函数的导函数,并且求的两个根,然后分类讨论,和三种情况下对应的单调性;(2)令,通过二次求导法,判断函数的单调性与最小值,设的零点为,求出取值范围,最后将转化为的对勾函数并求解最小值,即可证明出不等式.【小问1详解】函数的定义域为∵令得∵,∴,得或①当,即时,时,或;时,.∴在上单调递增,在上单调递减,在上单调递增②当,即时,时,或;时,.∴在上单调递增,在上单调递减,在上单调递增③当,即时,∴在上单调递增综上所述:当时,在和上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减;当时,在上单调递增【小问2详解】令,()∴,令∴,∴在上单调递增又∵,,∴使得,即(*)∴当时,,∴,∴单调递减∴当时,,∴,∴单调递增∴,()由(*)式可知:,∴,∴∵,∴函数单调递减∴,∴∴【点睛】求解本题的关键是利用二次求导法,通过虚设零点,求解原函数的单调性与最小值,并通过最小值的取值范围证明不等式.20、(1)(2)【解析】(1)由定义证明数列是等差数列,再由得出通项公式;(2)先由求和公式得出,再由裂项相消求和法求和即可.【小问1详解】由题意可知,,所以数列是公差的等差数列又,所以,故小问2详解】,则故21、(1)(2)【解析】(1)根据不等式的解答求得,当时,求得,结合集合并集的运算,即可求解;(2)由题意得到是的真子集,根据集合间的包含关系,列出不等式组,即可求解.【小问1详解】解:由,解得,即,当时,可得,所以.【小问2详解】解:由集合,因为,且是成立的必要不充分条件,是的真子集,所以且等号不能同时成立,解得,其中当和是满足题意,故实数的取值范围
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026秋招:太原重型机械集团笔试题及答案
- 热拉丝工班组管理测试考核试卷含答案
- 金融行业数据治理与安全管理手册
- 井下采煤机司机班组安全竞赛考核试卷含答案
- 足篮排球制作工操作管理强化考核试卷含答案
- 2026秋招:首都旅游集团面试题及答案
- 纤维染色工安全防护知识考核试卷含答案
- 石膏装饰板加工工安全知识宣贯模拟考核试卷含答案
- 工业车辆维修工安全知识宣贯竞赛考核试卷含答案
- 环氧乙烷(乙二醇)装置操作工冲突管理考核试卷含答案
- 黑龙江省哈尔滨市师范大学附中2026届数学高三第一学期期末质量检测模拟试题含解析
- DB31T+1661-2025公共区域电子屏播控安全管理要求
- 医疗联合体儿童保健服务模式创新
- 2026年书记员考试题库附答案
- 中国高尿酸血症与痛风诊疗指南(2024更新版)课件
- 2025至2030中国专用车行业发展分析及投资前景与战略规划报告
- DB13∕T 6066.3-2025 国资数智化 第3部分:数据治理规范
- 2025年白山辅警招聘考试题库及答案1套
- 特种设备外借协议书
- 三元股份财务风险控制研究
- DBJ-T 13-417-2023 工程泥浆技术标准
评论
0/150
提交评论