版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖南省株洲市第十八中学数学高一上期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若,则恒成立时的范围是()A. B.C. D.2.若方程则其解得个数为()A.3 B.4C.6 D.53.已知函数f(x)=3x A. B.C. D.4.设.若存在,使得,则的最小值是()A.2 B.C.3 D.5.函数的定义域是()A. B.C.R D.6.若向量,,满足,则A.1 B.2C.3 D.47.若,分别是方程,的解,则关于的方程的解的个数是()A B.C. D.8.在数学史上,一般认为对数的发明者是苏格兰数学家——纳皮尔(Napier,1550-1617年).在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科.可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间.纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数.在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法.让我们来看看下面这个例子:
12345678…1415…272829248163264128256…1638432768…134217728268435356536870912这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂.如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的和来实现.比如,计算64×256的值,就可以先查第一行的对应数字:64对应6,256对应8,然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384,按照这样的方法计算:16384×32768=A.134217728 B.268435356C.536870912 D.5137658029.设全集,集合,,则等于A. B.{4}C.{2,4} D.{2,4,6}10.已知实数满足,则函数的零点在下列哪个区间内A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的单调递增区间为_____________12.函数的定义域为D,给出下列两个条件:①对于任意,当时,总有;②在定义域内不是单调函数.请写出一个同时满足条件①②的函数,则______________.13.若定义域为的函数满足:对任意能构成三角形三边长的实数,均有,,也能构成三角形三边长,则m的最大值为______.(是自然对数的底)14.已知函数的图象经过定点,若为正整数,那么使得不等式在区间上有解的的最大值是__________.15.函数的图象与轴相交于点,如图是它的部分图象,若函数图象相邻的两条对称轴之间的距离为,则_________.16.已知是定义在R上的奇函数,当时,,则当时,______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,求,实数a的取值范围18.袋子里有6个大小、质地完全相同且带有不同编号的小球,其中有1个红球,2个白球,3个黑球,从中任取2个球.(1)写出样本空间;(2)求取出两球颜色不同的概率;(3)求取出两个球中至多一个黑球的概率.19.设全集,集合(1)求;(2)若集合满足,求实数的取值范围.20.已知函数,(1)若,求在区间上的最小值;(2)若在区间上有最大值3,求实数的值.21.已知(1)若函数f(x)的图象过点(1,1),求不等式f(x)<1的解集;(2)若函数只有一个零点,求实数a的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用条件f(1)<0,得到0<a<1.f(x)在R上单调递减,从而将f(x2+tx)<f(x﹣4)转化为x2+tx>x﹣4,研究二次函数得解.【详解】∵f(﹣x)=a﹣x﹣ax=﹣f(x),∴f(x)是定义域为R的奇函数,∵f(x)=ax﹣a﹣x(a>0且a≠1),且f(1)<0,∴,又∵a>0,且a≠1,∴0<a<1∵ax单调递减,a﹣x单调递增,∴f(x)在R上单调递减不等式f(x2+tx)+f(4﹣x)<0化为:f(x2+tx)<f(x﹣4),∴x2+tx>x﹣4,即x2+(t﹣1)x+4>0恒成立,∴△=(t﹣1)2﹣16<0,解得:﹣3<t<5故答案为B【点睛】本题主要考查函数的奇偶性和单调性,考查不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分析推理能力.2、C【解析】分别画出和的图像,即可得出.【详解】方程,即,令,,易知它们都是偶函数,分别画出它们的图像,由图可知它们有个交点.故选:.【点睛】本题主要考查的是函数零点,利用数型结合是解决本题的关键,同时考查偶函数的性质,是中档题.3、B【解析】根据对数的运算性质求出,再根据指数幂的运算求出即可.【详解】由题意知,,则,所以.故选:B4、D【解析】由题设在上存在一个增区间,结合、且,有必为的一个子区间,即可求的范围.【详解】由题设知:,,又,所以在上存在一个增区间,又,所以,根据题设知:必为的一个子区间,即,所以,即的最小值是.故选:D.【点睛】关键点点睛:结合题设条件判断出必为的一个子区间.5、A【解析】显然这个问题需要求交集.【详解】对于:,;对于:,;故答案为:A.6、A【解析】根据向量的坐标运算,求得,再根据向量的数量积的坐标运算,即可求解,得到答案.【详解】由题意,向量,,,则向量,所以,解得,故选A.【点睛】本题主要考查了向量的坐标运算,及向量的数量积的坐标运算的应用,其中解答中熟记向量的数量积的坐标运算公式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.7、B【解析】∵,分别是方程,的解,∴,,∴,,作函数与的图象如下:结合图象可以知道,有且仅有一个交点,故,即分类讨论:()当时,方程可化为,计算得出,()当时,方程可化,计算得出,;故关于的方程的解的个数是,本题选择B选项.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围8、C【解析】先找到16384与32768在第一行中的对应数字,进行相加运算,再找和对应第二行中的数字即可.【详解】由已知可知,要计算16384×32768,先查第一行的对应数字:16384对应14,32768对应15,然后再把第一行中的对应数字加起来:14+15=29,对应第二行中的536870912,所以有:16384×32768=536870912,故选C.【点睛】本题考查了指数运算的另外一种算法,关键是认真审题,理解题意,属于简单题.9、C【解析】由并集与补集的概念运算【详解】故选:C10、B【解析】由3a=5可得a值,分析函数为增函数,依次分析f(﹣2)、f(﹣1)、f(0)的值,由函数零点存在性定理得答案【详解】根据题意,实数a满足3a=5,则a=log35>1,则函数为增函数,且f(﹣2)=(log35)﹣2+2×(﹣2)﹣log53<0,f(﹣1)=(log35)﹣1+2×(﹣1)﹣log53=﹣2<0,f(0)=(log35)0﹣log53=1﹣log53>0,由函数零点存在性可知函数f(x)的零点在区间(﹣1,0)上,故选B【点睛】本题考查函数零点存在性定理的应用,分析函数的单调性是关键二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先求出函数的定义域,再利用求复合函数单调区间的方法求解即得.【详解】依题意,由得:或,即函数的定义域是,函数在上单调递减,在上单调递增,而在上单调递增,于是得在是单调递减,在上单调递增,所以函数的单调递增区间为.故答案为:12、【解析】根据题意写出一个同时满足①②的函数即可.【详解】解:易知:,上单调递减,上单调递减,故对于任意,当时,总有;且在其定义域上不单调.故答案为:.13、##【解析】不妨设三边的大小关系为:,利用函数的单调性,得出,,的大小关系,作为三角形三边则有任意两边之和大于第三边,再利用基本不等式求出边的范围得出的最大值即可.【详解】在上严格增,所以,不妨设,因为对任意能构成三角形三边长的实数,均有,,也能构成三角形三边长,所以,因为,所以,因为对任意都成立,所以,所以,所以,所以,所以m的最大值为故答案为:.14、【解析】由可得出,由已知不等式结合参变量分离法可得出,令,求出函数在上的最大值,即可得出实数的取值范围,即可得解.【详解】由已知可得,则,解得,故,由得,因为,则,可得,令,,则函数在上单调递减,所以,,.因此,正整数的最大值为.故答案:.15、【解析】根据图象可得,由题意得出,即可求出,再代入即可求出,进而得出所求.【详解】由函数图象可得,相邻的两条对称轴之间的距离为,,则,,,又,即,,或,根据“五点法”画图可判断,,.故答案为:.16、【解析】根据奇函数的性质求解【详解】时,,是奇函数,此时故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】由题意利用指数函数、对数函数、幂函数的单调性,求出实数的取值范围【详解】解:因为,所以,所以因为,所以,所以又因为,所以.因为,所以又因为,所以.综上,实数a取值范围是18、(1)答案见解析;(2);(3).【解析】(1)将1个红球记为个白球记为个黑球记为,进而列举出所有可能性,进而得到样本空间;(2)由题意,有1红1白,1红1黑,1白1黑,共三大类情况,由(1),列举出所有可能性,进而求出概率;(3)由题意,有1红1白,1红1黑,1白1黑,2白,共四大类情况,由(1),列举出所有可能性,进而求出概率【小问1详解】将1个红球记为个白球记为个黑球记为,则样本空间,共15个样本点.【小问2详解】记A事件为“取出两球颜色不同”,则两球颜色可能是1红1白,1红1黑,1白1黑,则包含11个样本点,所以.【小问3详解】记事件为“取出两个球至多有一个黑球”,则两球颜色可能是1红1白,1红1黑,1白1黑,2白,则包含12个样本点,所以.19、(1)或(2)【解析】(1)化简集合,利用交集的定义求解,再利用补集的定义求解;(2)化简集合,由,得,列不等式求解.【小问1详解】化简,,所以或.【小问2详解】,因为,所以,所以,所以实数的取值范围为20、(1);(2)或.【解析】(1)先求函数对称轴,再根据对称轴与定义区间位置关系确定最小值取法(2)根据对称轴与定义区间位置关系三种情况分类讨论最大值取法,再根据最大值为3,解方程求出实数的值试题解析:解:(1)若,则函数图像开口向下,对称轴为,所以函数在区间上是单调递增的,在区间上是单调递减的,有又,(2)对称轴为当时,函数在在区间上是单调递减的,则,即;当时,函数在区间上是单调递增的,在区间上是单调递减的,则,解得,不符合;当时,函数在区间上是单调递增的,则,解得;综上所述,或点睛:(1)已知函数的奇偶性求参数,一般采用待定系数法求解,根据得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值;(2)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于的方程,从而可得的值或解析式.21、(1)(-1,1)(2)a≥0或【解析】(1)将点(1,1)代入函数解析式中可求出的值,然后根据对数函数的单调性解不等式即可,(2)将问题转化为只有一解,再转
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年纹绣工艺(眉形修复技巧)试题及答案
- 2025年大学大二(轮机工程)船舶动力装置原理综合测试试题及答案
- 2025年中职计算机软件基础(软件基础知识)试题及答案
- 2025年中职(建筑装饰技术)建筑装饰工程施工组织设计试题及答案
- 2025年高职电子技术(电子技术实训)试题及答案
- 2026年职业道德综合测试(职业道德规范)试题及答案
- 2025年中职(物流服务与管理)客户服务实务试题及答案
- 2025年大学第三学年(民航安全科学与工程)安全评估阶段测试题及答案
- 2025年中职(电梯安装与维修保养)电梯安装技术阶段测试试题及答案
- 2025年中职第二学年(眼视光与配镜)验光技术基础试题及答案
- 2026年1月福建厦门市集美区后溪镇卫生院补充编外人员招聘16人笔试模拟试题及答案解析
- 2026年长治职业技术学院单招职业技能考试题库附答案解析
- 2026年丹东市人力资源和社会保障局公开选聘法律顾问备考题库及完整答案详解一套
- 承包工人饭堂合同范本
- 2026年干部综合能力高频知识点测试题附解析
- GB/T 46544-2025航空航天用螺栓连接横向振动防松试验方法
- 炎德·英才大联考长沙市一中2026届高三月考(五)历史试卷(含答案详解)
- 零售行业采购经理商品采购与库存管理绩效考核表
- 广东省中山市2023-2024学年四年级上学期期末数学试卷
- 地质勘查现场安全风险管控清单
- 松下panasonic-经销商传感器培训
评论
0/150
提交评论