版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
名校联盟2026届高一上数学期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则为()A. B.2C.3 D.或32.用二分法求方程的近似解时,可以取的一个区间是()A. B.C. D.3.化简
的值为A. B.C. D.4.向量“,不共线”是“|+|<||+||”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.已知集合,则集合中元素的个数为()A.1 B.2C.3 D.46.若-4<x<1,则()A.有最小值1 B.有最大值1C.有最小值-1 D.有最大值-17.若函数且,则该函数过的定点为()A. B.C. D.8.若不等式对一切恒成立,那么实数的取值范围是A. B.C. D.9.直线与圆相交于两点,若,则的取值范围是A. B.C. D.10.如图正方体,棱长为1,为中点,为线段上的动点,过的平面截该正方体所得的截面记为,则下列命题正确的是当时,为四边形;当时,为等腰梯形;当时,与交点R满足;当时,为六边形;当时,的面积为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.2021年10月16日0时23分,搭载神舟十三号载人飞船的长征二号F遥十三运载火箭,在酒泉卫星发射中心点火升空.约582秒后,载人飞船与火箭成功分离,进入预定轨道,发射取得圆满成功.此次航天飞行任务中,火箭起到了非常重要的作用.火箭质量是箭体质量与燃料质量的和,在不考虑空气阻力的条件下,燃料质量不同的火箭的最大速度之差与火箭质量的自然对数之差成正比.已知某火箭的箭体质量为mkg,当燃料质量为mkg时,该火箭的最大速度为2ln2km/s,当燃料质量为时,该火箭最大速度为2km/s.若该火箭最大速度达到第一宇宙速度7.9km/s,则燃料质量是箭体质量的_______________倍.(参考数据:)12.已知函数给出下列四个结论:①存在实数,使函数为奇函数;②对任意实数,函数既无最大值也无最小值;③对任意实数和,函数总存在零点;④对于任意给定的正实数,总存在实数,使函数在区间上单调递减.其中所有正确结论的序号是______________.13.已知幂函数的图像过点,则的解析式为=__________14.设,为单位向量.且、的夹角为,若=+3,=2,则向量在方向上的射影为________.15.已知,那么的值为___________.16.若,则的最小值是___________,此时___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足(,且),且,设,,数列满足.(1)求证:数列是等比数列并求出数列的通项公式;(2)求数列的前n项和;(3)对于任意,,恒成立,求实数m的取值范围.18.已知函数.(1)若不等式对于一切实数恒成立,求实数的取值范围;(2)若,解关于的不等式.19.已知奇函数和偶函数满足(1)求和的解析式;(2)存在,,使得成立,求实数a的取值范围20.已知函数.(1)判断函数在上的单调性,并用定义证明;(2)记函数,证明:函数在上有唯一零点.21.已知二次函数满足:,且该函数的最小值为1.(1)求此二次函数的解析式;(2)若函数的定义域为(其中),问是否存在这样的两个实数m,n,使得函数的值域也为A?若存在,求出m,n的值;若不存在,请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据分段函数的定义域求解.【详解】因为,所以故选:C2、B【解析】构造函数并判断其单调性,借助零点存在性定理即可得解.【详解】,令,在上单调递增,并且图象连续,,,在区间内有零点,所以可以取的一个区间是.故选:B3、C【解析】根据两角和的余弦公式可得:,故答案为C.4、A【解析】利用向量的线性运算的几何表示及充分条件,必要条件的概念即得.【详解】当向量“,不共线”时,由向量三角形的性质可得“|+|<||+||”成立,即充分性成立,当“,方向相反”时,满足“|+|<||+||”,但此时两个向量共线,即必要性不成立,故向量“,不共线”是“|+|<||+||”的充分不必要条件.故选:A.5、D【解析】由题意,集合是由点作为元素构成的一个点集,根据,即可得到集合的元素.【详解】由题意,集合B中元素有(1,1),(1,2),(2,1),(2,2),共4个.故选D【点睛】与集合元素有关问题的思路:(1)确定集合的元素是什么,即确定这个集合是数集还是点集(2)看这些元素满足什么限制条件(3)根据限制条件列式求参数的值或确定集合元素的个数,但要注意检验集合是否满足元素的互异性6、D【解析】先将转化为,根据-4<x<1,利用基本不等式求解.【详解】又∵-4<x<1,∴x-1<0∴-(x-1)>0∴.当且仅当x-1=,即x=0时等号成立故选:D【点睛】本题主要考查基本不等式的应用,还考查了转化求解问题的能力,属于基础题.7、D【解析】根据指数函数的图像经过定点坐标是,利用平移可得到答案.【详解】因为指数函数的图像经过定点坐标是,函数图像向右平移个单位,再向上平移个单位,得到,函数的图像过的定点.故选:.【点睛】本题主要考查的是指数函数的图像和性质,考查学生对指数函数的理解,是基础题.8、D【解析】由绝对值不等式解法,分类讨论去绝对值,再根据恒成立问题的解法即可求得a的取值范围【详解】根据绝对不等式,分类讨论去绝对值,得所以所以所以选D【点睛】本题考查了绝对值不等式化简方法,恒成立问题的基本应用,属于基础题9、C【解析】圆,即.直线与圆相交于两点,若,设圆心到直线距离.则,解得.即,解得故选C.点睛:直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小10、D【解析】由已知根据的不同取值,分别作出不同情况下的截面图形,利用数形结合思想能求出结果【详解】当时,如图,是四边形,故正确当时,如图,为等腰梯形,正确;当时,如图,由三角形与三角形相似可得,由三角形与三角形相似可得,,正确当时,如图是五边形,不正确;当时,如图是菱形,面积为,正确,正确的命题为,故选D【点睛】本题主要考查正方体的截面,意在考查空间想象能力,解题时要认真审题,注意数形结合思想的合理运用,是中档题二、填空题:本大题共6小题,每小题5分,共30分。11、51【解析】设燃料质量不同的火箭的最大速度之差与火箭质量的自然对数之差成正比的比例系数为k,根据条件列方程求出k值,再设当该火箭最大速度达到第--宇宙速度7.9km/s时,燃料质量是箭体质量的a倍,根据题中数据再列方程可得a值.【详解】设燃料质量不同的火箭的最大速度之差与火箭质量的自然对数之差成正比的比例系数为k,则,解得,设当该火箭最大速度达到第一宇宙速度7.9km/s时,燃料质量是箭体质量的a倍,则,得,则燃料质量是箭体质量的51倍故答案为:51.12、①②③④【解析】分别作出,和的函数的图象,由图象即可判断①②③④的正确性,即可得正确答案.【详解】如上图分别为,和时函数的图象,对于①:当时,,图象如图关于原点对称,所以存在使得函数为奇函数,故①正确;对于②:由三个图知当时,,当时,,所以函数既无最大值也无最小值;故②正确;对于③:如图和图中存在实数使得函数图象与没有交点,此时函数没有零点,所以对任意实数和,函数总存在零点不成立;故③不正确对于④:如图,对于任意给定的正实数,取即可使函数在区间上单调递减,故④正确;故答案为:①②④【点睛】关键点点睛:本题解题关键点是分段函数图象,涉及二次函数的图象,要讨论,和即明确分段区间,作出函数图象,数形结合可研究分段函数的性质.13、##【解析】根据幂函数的定义设函数解析式,将点的坐标代入求解即可.【详解】由题意知,设幂函数的解析式为为常数),则,解得,所以.故答案为:14、【解析】考点:该题主要考查平面向量的概念、数量积的性质等基础知识,考查数学能力.15、##0.8【解析】由诱导公式直接可得.详解】.故答案为:16、①.1②.0【解析】利用基本不等式求解.【详解】因为,所以,当且仅当,即时,等号成立,所以其最小值是1,此时0,故答案为:1,0三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)(3).【解析】(1)将式子写为:得证,再通过等比数列公式得到的通项公式.(2)根据(1)得到进而得到数列通项公式,再利用错位相减法得到前n项和.(3)首先判断数列的单调性计算其最大值,转换为二次不等式恒成立,将代入不等式,计算得到答案.【详解】(1)因为,所以,,所以是等比数列,其中首项是,公比为,所以,.(2),所以,由(1)知,,又,所以.所以,所以两式相减得.所以.(3),所以当时,,当时,,即,所以当或时,取最大值是.只需,即对于任意恒成立,即所以.【点睛】本题考查了等比数列的证明,错位相减法求前N项和,数列的单调性,数列的最大值,二次不等式恒成立问题,综合性强,计算量大,意在考查学生解决问题的能力.18、(1);(2)答案见解析.【解析】(1)根据给定条件利用一元二次不等式恒成立求解作答.(2)在给定条件下分类解一元二次不等式即可作答.【小问1详解】,恒成立等价于,,当时,,对一切实数不恒成立,则,此时必有,即,解得,所以实数的取值范围是.【小问2详解】依题意,因,则,当时,,解得,当时,,解得或,当时,,解得或,所以,当时,原不等式的解集为;当时,原不等式的解集为或;当时,原不等式的解集为或.19、(1),(2)【解析】(1)利用奇偶性得到方程组,求解和的解析式;(2)在第一问的基础上,问题转化为在上有解,分类讨论,结合对勾函数单调性求解出的最值,进而求出实数a的取值范围.【小问1详解】因为奇函数和偶函数满足①,所以②;联立①②得:,;【小问2详解】变形为,因为,所以,所以,当时,在上有解,符合要求;令,由对勾函数可知,当时,在上单调递减,在上单调递增,,要想上有解,只需,解得:,所以;若且,在上单调递增,要想上有解,只需,解得:,所以;综上:实数a的取值范围为20、(1)在上单调递增,证明见解析;(2)证明见解析.【解析】(1)根据题意,结合作差法,即可求证;(2)根据题意,结合单调性与零点存在性定理,即可求证.【小问1详解】函数在上单调递增.证明:任取,则,因为,所以,所以,即,因此,故函数在上单调递增.【小问2详解】证明:因为,,所以由函数零点存在定理可知,函数在上有零点,因为和都在上单调
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职冷链物流服务与管理(冷链仓储管理)试题及答案
- 2025年中职汽车美容与装潢(汽车美容应用)试题及答案
- 2025年大学数据挖掘(数据挖掘应用)试题及答案
- 2025年中职(药品营销)药品销售技巧试题及答案
- 2025年中职建筑装饰工程技术(装饰工程进阶)试题及答案
- 2025年高职美术学(美术教育心理学案例分析)试题及答案
- 2025年中职电气运行与控制(电气设备操作)试题及答案
- 2025年大学软件工程(软件需求工程)试题及答案
- 2025年高职智能电网工程技术(电网调度自动化)试题及答案
- 2025年中职信息资源管理(信息管理学基础)试题及答案
- 换汇合同范本
- 认知障碍患者进食问题评估与处理
- DB37T 5273.2-2024 工程建设项目与建筑市场平台标准 第2部分:基础信息数据
- 体育科学研究方法(山东联盟)智慧树知到期末考试答案章节答案2024年曲阜师范大学 天津体育学院
- 氧气理化特性表
- 物资、百货、五金采购 投标技术方案技术标
- 安全生产投入台账(模板)
- 新能源的发展与城市能源转型与升级
- 《医务人员医德规范》课件
- 儿童吸入性肺炎护理查房课件
- 生理学期中考试试题及答案
评论
0/150
提交评论