2026届浙江省之江教育评价高二上数学期末统考试题含解析_第1页
2026届浙江省之江教育评价高二上数学期末统考试题含解析_第2页
2026届浙江省之江教育评价高二上数学期末统考试题含解析_第3页
2026届浙江省之江教育评价高二上数学期末统考试题含解析_第4页
2026届浙江省之江教育评价高二上数学期末统考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届浙江省之江教育评价高二上数学期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲、乙两名射击运动员进行比赛,甲的中靶概率为0.8,乙的中靶概率为0.9,则两人各射击一次恰有一人中靶的概率为()A.0.26 B.0.28C.0.72 D.0.982.直线是双曲线的一条渐近线,,分别是双曲线左、右焦点,P是双曲线上一点,且,则()A.2 B.6C.8 D.103.甲、乙两名同学8次考试的成绩统计如图所示,记甲、乙两人成绩的平均数分别为,,标准差分别为,,则()A.>,< B.>,>C.<,< D.<,>4.已知数列满足:对任意的均有成立,且,,则该数列的前2022项和()A0 B.1C.3 D.45.等比数列的各项均为正数,且,则()A.5 B.10C.4 D.6.圆与圆的位置关系为()A.外切 B.内切C.相交 D.相离7.在等差数列中,若,且前n项和有最大值,则使得的最大值n为()A.15 B.16C.17. D.188.一个公司有8名员工,其中6名员工的月工资分别为5200,5300,5500,6100,6500,6600,另两名员工数据不清楚,那么8位员工月工资的中位数不可能是()A.5800 B.6000C.6200 D.64009.已知正方形的四个顶点都在椭圆上,若的焦点F在正方形的外面,则的离心率的取值范围是()A. B.C. D.10.过坐标原点作直线的垂线,垂足为,则的取值范围是()A. B.C. D.11.下列四个命题中为真命题的是()A.设p:1<x<2,q:2x>1,则p是q的必要不充分条件B.命题“”的否定是“”C.函数的最小值是4D.与的图象关于直线y=x对称12.“”是“曲线为焦点在轴上的椭圆”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知数列{}的通项公式为,前n项和为,当取得最小值时,n的值为___________.14.已知椭圆的右顶点为P,右焦点F与抛物线的焦点重合,的顶点与的中心O重合.若与相交于点A,B,且四边形为菱形,则的离心率为___________.15.一个四面体有五条棱长均为2,则该四面体的体积最大值为_______16.已知等比数列满足:,,,则公比______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆经过点,左焦点为.(Ⅰ)求椭圆的方程;(Ⅱ)若是椭圆的右顶点,过点且斜率为的直线交椭圆于两点,求的面积.18.(12分)已知三点共线,其中是数列中的第n项.(1)求数列的通项;(2)设,求数列的前n项和.19.(12分)已知椭圆一个顶点恰好是抛物线的焦点,椭圆C的离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)从椭圆C在第一象限内的部分上取横坐标为2的点P,若椭圆C上有两个点A,B使得的平分线垂直于坐标轴,且点B与点A的横坐标之差为,求直线AP的方程.20.(12分)已知函数(1)当时,求曲线在点处的切线方程;(2)若对任意的,恒成立,求实数a的取值范围21.(12分)已知椭圆的离心率为,长轴长为,F为椭圆的右焦点(1)求椭圆C的方程;(2)经过点的直线与椭圆C交于两点,,且以为直径的圆经过原点,求直线的斜率;(3)点是以长轴为直径的圆上一点,圆在点处的切线交直线于点,求证:过点且垂直于的直线过定点22.(10分)设椭圆的左,右焦点分别为,其离心率为,且点在C上.(1)求C的方程;(2)O为坐标原点,P为C上任意一点.若M为的中点,过M且平行于的直线l交椭圆C于A,B两点,是否存在实数,使得?若存在,求值;若不存在,说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】依据独立事件同时发生的概率即可求得甲乙两人各射击一次恰有一人中靶的概率.【详解】记甲中靶为事件A,乙中靶为事件B,则甲乙两人各射击一次恰有一人中靶,包含甲中乙不中和甲不中乙中两种情况,则甲乙两人各射击一次恰有一人中靶的概率为故选:A2、C【解析】根据渐近线可求出a,再由双曲线定义可求解.【详解】因为直线是双曲线的一条渐近线,所以,,又或,或(舍去),故选:C3、A【解析】根据折线统计图,结合均值、方差的实际含义判断、及、的大小.【详解】由统计图知:甲总成绩比乙总成绩要高,则>,又甲成绩的分布比乙均匀,故<.故选:A.4、A【解析】根据可知,数列具有周期性,即可解出【详解】因为,所以,即,所以数列中的项具有周期性,,由,,依次对赋值可得,,一个周期内项的和为零,而,所以数列的前2022项和故选:A5、A【解析】利用等比数列的性质及对数的运算性质求解.【详解】由题有,则=5.故选:A6、A【解析】根据两圆半径和、差、圆心距之间的大小关系进行判断即可.【详解】由,该圆的圆心为,半径为.圆圆心为,半径为,因为两圆的圆心距为,两圆的半径和为,所以两圆的半径和等于两圆的圆心距,因此两圆相外切,故选:A7、A【解析】由题可得,则,可判断,,即可得出结果.【详解】前n项和有最大值,,,,,,,使得的最大值n为15.故选:A.【点睛】本题考查等差数列前n项和的有关判断,解题的关键是得出.8、D【解析】解:∵一个公司有8名员工,其中6名员工的月工资分别为5200,5300,5500,6100,6500,6600,∴当另外两名员工的工资都小于5300时,中位数为(5300+5500)÷2=5400,当另外两名员工的工资都大于5300时,中位数为(6100+6500)÷2=6300,∴8位员工月工资的中位数的取值区间为[5400,6300],∴8位员工月工资的中位数不可能是6400.本题选择D选项.9、C【解析】如图由题可得,进而可得,即求.【详解】如图根据对称性,点D在直线y=x上,可设,则,∴,可得,,即,又解得.故选:C.10、D【解析】求出直线直线过的定点A,由题意可知垂足是落在以OA为直径的圆上,由此可利用的几何意义求得答案,【详解】直线,即,令,解得,即直线过定点,由过坐标原点作直线的垂线,垂足为,可知:落在以OA为直径的圆上,而以OA为直径的圆为,如图示:故可看作是圆上的点到原点距离的平方,而圆过原点,圆上点到原点的最远距离为,但将原点坐标代入直线中,不成立,即直线l不过原点,所以不可能和原点重合,故,故选:D11、D【解析】根据推出关系和集合的包含关系判断A,根据全称命题的否定形式可判断B,根据对钩函数性质即三角函数的性质可判断C,根据反函数的图像性质可判断D.【详解】解:对于选项A:是的真子集,所以命题p是q的充分不必要条件,故A错误;对于选项B:命题“”的否定是“”,故B错误;对于选项C:函数,当时,,函数单调递减,当时取最小值,故C错误;对于选项D:与互为反函数,故图象关于直线y=x对称,故D正确.12、C【解析】∵“”⇒“方程表示焦点在轴上的椭圆”,“方程表示焦点在轴上的椭圆”⇒“”,∴“”是“方程表示焦点在轴上的椭圆”的充要条件,故选C.二、填空题:本题共4小题,每小题5分,共20分。13、7【解析】首先求出数列的正负项,再判断取得最小值时n的值.【详解】当,,解得:,当和时,,所以取得最小值时,.故答案为:714、【解析】设抛物线的方程为得到,把代入椭圆的方程化简即得解.【详解】设抛物线的方程为.由题得,代入椭圆的方程得,所以,所以,所以因为,所以.故答案为:【点睛】方法点睛:求椭圆的离心率常用的方法有:(1)公式法(根据已知求出代入离心率的公式即得解);(2)方程法(直接由已知得到关于离心率的方程解方程即得解).要根据已知条件灵活选择方法求解.15、1【解析】由已知中一个四面体有五条棱长都等于2,易得该四面体必然有两个面为等边三角形,根据棱锥的几何特征,分析出当这两个平面垂直时,该四面体的体积最大,将相关几何量代入棱锥体积公式,即可得到答案【详解】一个四面体有五条棱长都等于2,如下图:设除PC外的棱均为2,设P到平面ABC距离为h,则三棱锥的体积V=,∵是定值,∴当P到平面ABC距离h最大时,三棱锥体积最大,故当平面PAB⊥平面ABC时,三棱锥体积最大,此时h为等边三角形PAB的AB边上的高,则h,故三棱锥体积的最大值为:故答案为:116、【解析】根据等比数列的通项公式可得,结合即可求出公比.【详解】设等比数列的公式为q,则,即,解得,又,所以,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由椭圆的定义求出的值,由求出,代入,得到椭圆的方程;(Ⅱ)由点斜式求出直线的方程,设,联立直线与椭圆方程,求出的值,再算出的面积试题解析(Ⅰ)由椭圆的定义得:又,故,∴椭圆的方程为:.(Ⅱ)过的直线方程为,,联立,设,则,∴的面积.点睛:本题主要考查了求椭圆的方程,直线与椭圆相交时弦长的计算等,属于中档题.在(Ⅱ)中,注意的面积的计算公式18、(1)(2)【解析】(1)由三点共线可知斜率相等,即可得出答案;(2)由题可得,利用错位相减法即可求出答案.【小问1详解】三点共线,【小问2详解】①②①—②得19、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由题意可得关于参数的方程,解之即可得到结果;(Ⅱ)设直线AP的斜率为k,联立方程结合韦达定理可得A点坐标,同理可得B点坐标,结合横坐标之差为,可得直线方程.【详解】(Ⅰ)由抛物线方程可得焦点为,则椭圆C的一个顶点为,即.由,解得.∴椭圆C的标准方程是;(Ⅱ)由题可知点,设直线AP的斜率为k,由题意知,直线BP的斜率为,设,,直线AP的方程为,即.联立方程组消去y得.∵P,A为直线AP与椭圆C的交点,∴,即.把换成,得.∴,解得,当时,直线BP的方程为,经验证与椭圆C相切,不符合题意;当时,直线BP的方程为,符合题意.∴直线AP得方程为.【点睛】关键点点睛:两条直线关于直线对称,两直线的倾斜角互补,斜率互为相反数.20、(1)(2)【解析】(1)先求导,由到数值求出斜率,最后根据点斜式求出方程即可;(2)采用分离常数法,转化为求新函数的值域即可.【小问1详解】时,,,则,,所以在点处的切线方程为,即【小问2详解】对任意的,恒成立,即,对任意的,令,即,则,因为,,所以当时,,在区间上单调递减,当时,,在区间上单调递增,则,所以21、(1);(2);(3).【解析】(1)由题意中离心率和长轴长可求出,即可求出椭圆方程.(2)设出与的坐标即直线的方程,把直线与椭圆方程进行联立写出韦达定理,由题意以为直径圆经过原点可得,化简即可求出直线的斜率.(3)由题意可得圆的方程,设,由和直线的方程化简,即可得到答案.【小问1详解】,,椭圆C的方程为.【小问2详解】由题意知直线的斜率存在且不为0,设直线的方程为.设.把直线的方程与椭圆的方程进行联立得:..由以为直径圆经过原点知,..经检验,满足,所以.【小问3详解】由题意可得圆的方程为,设,由得.①.当时,,直线的方程为.直线过椭圆的右焦点.当时,直线的斜率为且过,②把①代入②中得.故直线过椭圆的右焦点.综上所述,直线过椭圆的右焦点.22、(1);(2).【解析】(1)列出关于a、b、c的方程组求解即可;(2)直线l斜率不存在时,易得λ的值;斜率存在时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论