2026届安徽省安师大附中数学高一上期末综合测试模拟试题含解析_第1页
2026届安徽省安师大附中数学高一上期末综合测试模拟试题含解析_第2页
2026届安徽省安师大附中数学高一上期末综合测试模拟试题含解析_第3页
2026届安徽省安师大附中数学高一上期末综合测试模拟试题含解析_第4页
2026届安徽省安师大附中数学高一上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届安徽省安师大附中数学高一上期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若方程x2+2x+m2+3m=mcos(x+1)+7有且仅有1个实数根,则实数m的值为()A.2 B.-2C.4 D.-42.对于每个实数x,设取两个函数中的较小值.若动直线y=m与函数的图象有三个不同的交点,它们的横坐标分别为,则的取值范围是()A. B.C. D.3.设,,则a,b,c的大小关系是()A. B.C. D.4.设,,且,则A. B.C. D.5.当时,函数和的图像只可能是()A. B.C. D.6.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半这条直线被后人称之为三角形的欧拉线若的顶点,,且的欧拉线的方程为,则顶点C的坐标为A. B.C. D.7.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上一点,则A. B.C. D.8.的值域是()A. B.C. D.9.下列选项中,与的值不相等的是()A B.cos18°cos42°﹣sin18°sin42°C. D.10.某几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.直线与直线的距离是__________12.函数的最大值是,则实数的取值范围是___________13.已知,若,则_______;若,则实数的取值范围是__________14.已知的定义域为,那么a的取值范围为_________15.将函数的图象向左平移个单位长度得到函数的图象,若使得,且的最小值为,则_________.16.已知函数若存在实数使得函数的值域为,则实数的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.由历年市场行情知,从11月1日起的30天内,某商品每件的销售价格(元)与时间(天)的函数关系是,日销售量(件)与时间(天)的函数关系是.(1)设该商品的日销售额为y元,请写出y与t的函数关系式;(商品的日销售额=该商品每件的销售价格×日销售量)(2)求该商品的日销售额的最大值,并指出哪一天的销售额最大?18.已知函数.(1)用五点法作函数在区间上的图象;(2)解关于的方程.19.已知函数(,且)(1)若函数的图象过点,求b的值;(2)若函数在区间上的最大值比最小值大,求a的值20.设函数(1)若函数的图象关于原点对称,求函数的零点;(2)若函数在,的最大值为,求实数的值21.已知幂函数的图象经过点.(1)求实数a的值;(2)用定义法证明在区间上是减函数.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】令,由对称轴为,可得,解出,并验证即可.【详解】依题意,有且仅有1个实数根.令,对称轴为.所以,解得或.当时,,易知是连续函数,又,,所以在上也必有零点,此时不止有一个零点,故不合题意;当时,,此时只有一个零点,故符合题意.综上,.故选:A【点睛】关键点点睛:构造函数,求出的对称轴,利用对称的性质得出.2、C【解析】如图,作出函数的图象,其中,设与动直线的交点的横坐标为,∵图像关于对称∴∵∴∴故选C点睛:本题首先考查新定义问题,首先从新定义理解函数,为此解方程,确定分界点,从而得函数的具体表达式,画出函数图象,通过图象确定三个数中具有对称关系,,因此只要确定的范围就能得到的范围.3、C【解析】根据指数函数与对数函数的性质,求得的取值范围,即可求解.【详解】由对数的性质,可得,又由指数函数的性质,可得,即,且,所以.故选:C.4、C【解析】,则,即,,,即故选点睛:本题主要考查了切化弦及两角和的余弦公式的应用,在遇到含有正弦、余弦及正切的运算时可以将正切转化为正弦及余弦,然后化简计算,本题还运用了两角和的余弦公式并结合诱导公式化简,注意题目中的取值范围5、A【解析】由一次函数的图像判断出a、b的符号,结合指数函数的图像一一进行判断可得答案.【详解】解:A项,由一次函数的图像可知此时函数为减函数,故A项正确;B项,由一次函数的图像可知此时函数为增函数,故B项错误;C项,由一次函数的图像可知,此时函数为的直线,故C项错误;D项,由一次函数的图像可知,,此时函数为增函数,故D项错误;故选A.【点睛】本题主要考查指数函数的图像特征,相对简单,由直线得出a、b的范围对指数函数进行判断是解题的关键.6、A【解析】设出点C的坐标,由重心坐标公式求得重心,代入欧拉线得一方程,求出AB的垂直平分线,和欧拉线方程联立求得三角形的外心,由外心到两个顶点的距离相等得另一方程,两方程联立求得点C的坐标【详解】设C(m,n),由重心坐标公式得,三角形ABC的重心为(,),代入欧拉线方程得:2=0,整理得:m﹣n+4=0①AB的中点为(1,2),直线AB的斜率k2,AB的中垂线方程为y﹣2(x﹣1),即x﹣2y+3=0联立,解得∴△ABC的外心为(﹣1,1)则(m+1)2+(n﹣1)2=32+12=10,整理得:m2+n2+2m﹣2n=8②联立①②得:m=﹣4,n=0或m=0,n=4当m=0,n=4时B,C重合,舍去∴顶点C的坐标是(﹣4,0)故选A【点睛】本题考查直线方程的求法,训练了直线方程的点斜式,考查了方程组的解法7、A【解析】由三角函数定义得tan再利用同角三角函数基本关系求解即可【详解】由三角函数定义得tan,即,得3cos解得或(舍去)故选A【点睛】本题考查三角函数定义及同角三角函数基本关系式,熟记公式,准确计算是关键,是基础题8、A【解析】先求得的范围,再由单调性求值域【详解】因,所以,又在时单调递增,所以当时,函数取得最大值为,所以值域是,故选:A.9、C【解析】先计算的值,再逐项计算各项的值,从而可得正确的选项.【详解】.对于A,因为,故A正确.对于B,,故B正确.对于C,,故C错误.对于D,,故D正确.故选:C.10、A【解析】由题可得该几何体为正方体的一半,截去了一个三棱锥,即得.【详解】由三视图可知该几何体为正方体的一半,截去了一个三棱锥,如图,则其体积为.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】12、[-1,0]【解析】函数,当时,函数有最大值,又因为,所以,故实数的取值范围是13、①.②.【解析】先判断函数的奇偶性,由求解;再根据函数的单调性,由求解.【详解】因为的定义域为R,且,,所以是奇函数,又,则-2;因为在上是增函数,所以在上是增函数,又是R上的奇函数,所以在R上递增,且,所以由,得,即,所以,解得或,所以实数的取值范围是,故答案为:,14、【解析】根据题意可知,的解集为,由即可求出【详解】依题可知,的解集为,所以,解得故答案为:15、【解析】根据三角函数的图形变换,求得,根据,不妨设,求得,,得到则,根据题意得到,即可求解.【详解】将函数的图象向左平移个单位长度,可得,又由,不妨设,由,解得,即,又由,解得,即则,因为的最小值为,可得,解得或,因为,所以.故答案为:16、【解析】当时,函数为减函数,且在区间左端点处有令,解得令,解得的值域为,当时,fx=x在,上单调递增,在上单调递减,从而当时,函数有最小值,即为函数在右端点的函数值为的值域为,则实数的取值范围是点睛:本题主要考查的是分段函数的应用.当时,函数为减函数,且在区间左端点处有,当时,在,上单调递增,在上单调递减,从而当时,函数有最小值,即为,函数在右端点的函数值为,结合图象即可求出答案三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)日销售金额的最大值为900元,11月10日日销售金额最大【解析】(1)由日销售金额=每件的销售价格×日销售量可得;(2)利用二次函数的图像与性质可得结果.【详解】(1)设日销售额为元,则,所以即:(2)当时,,;当时,,故所求日销售金额的最大值为元,11月10日日销售金额最大.【点睛】本题主要考查了利用数学知识解决实际问题的能力,解题的关键是要把实际问题转化为数学问题,利用数学中二次函数的知识进行求解函数的最值.18、(1)画图见解析;(2)或.【解析】(1)根据列表、描点、连线的基本步骤,画出函数在的大致图像即可;(2)由题意得:,解得或,,分类求解即可得解方程的解集.【详解】(1),∴,,的变化如下表:0200的图象如图:(2)令,则,或,,或,,的解集为:或.【点睛】用“五点法”作的简图,主要是通过变量代换,设,由取,,,,来求出相应的,通过列表,计算得出五点坐标,描点后得出图象19、(1)1(2)或【解析】(1)将点坐标代入求出b的值;(2)分与两种情况,根据函数单调性表达出最大值和最小值,列出方程,求解a的值.【小问1详解】,解得.【小问2详解】当时,在区间上单调递减,此时,,所以,解得:或0(舍去);当时,在区间上单调递增,此时,,所以,解得:或0(舍去).综上:或20、(1)(2)【解析】(1)通过,求出.得到函数的解析式,解方程,求解函数的零点即可(2)利用换元法令,,,结合二次函数的性质求解函数的最值,推出结果即可【小问1详解】解:的图象关于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论