版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖南省江西省广东省名校高二上数学期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则()A.0 B.1C. D.22.设P为椭圆C:上一点,,分别为左、右焦点,且,则()A. B.C. D.3.在等差数列中,为其前项和,若.则()A. B.C. D.4.若复数的模为2,则的最大值为()A. B.C. D.5.如图,在正三棱柱中,若,则C到直线的距离为()A. B.C. D.6.已知数列是递减的等比数列,的前项和为,若,,则=()A.54 B.36C.27 D.187.已知向量=(3,0,1),=(﹣2,4,0),则3+2等于()A.(5,8,3) B.(5,﹣6,4)C.(8,16,4) D.(16,0,4)8.某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45]岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是()A.31.6岁 B.32.6岁C.33.6岁 D.36.6岁9.我国古代数学著作《算法统宗》中有这样一段记载:“一百八十九里关,初行健步不为难,次日脚痛减一半,六朝才得到其关.”其大意为:“有一个人共行走了189里的路程,第一天健步行走,从第二天起,因脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则该人第一天行走的路程为()A.108里 B.96里C.64里 D.48里10.已知空间四边形,其对角线、,、分别是边、的中点,点在线段上,且使,用向量,表示向量是A. B.C. D.11.已知p:,q:,那么p是q的()A.充要条件 B.必要不充分条件C.充分不必要条件 D.既不充分也不必要条件12.已知是等比数列,则()A.数列是等差数列 B.数列是等比数列C.数列是等差数列 D.数列是等比数列二、填空题:本题共4小题,每小题5分,共20分。13.已知从某班学生中任选两人参加农场劳动,选中两人都是男生的概率是,选中两人都是女生的概率是,则选中两人中恰有一人是女生的概率为______14.已知,,且,则的值是_________.15.某部门计划对某路段进行限速,为调查限速60km/h是否合理,对通过该路段的300辆汽车的车速进行检测,将所得数据按,,,分组,绘制成如图所示频率分布直方图.则________;这300辆汽车中车速低于限速60km/h的汽车有______辆.16.若圆柱的高、底面半径均为1,则其表面积为___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的内角A,B,C所对的边分别为a,b,c,且(1)求;(2)若,求的面积的最大值18.(12分)设函数,其中是自然对数的底数,.(1)若,求的最小值;(2)若,证明:恒成立.19.(12分)设双曲线的左、右焦点分别为,,且,一条渐近线的倾斜角为60°(1)求双曲线C的标准方程和离心率;(2)求分别以,为左、右顶点,短轴长等于双曲线虚轴长的椭圆的标准方程20.(12分)芯片作为在集成电路上的载体,广泛应用在手机、军工、航天等多个领域,是能够影响一个国家现代工业的重要因素.根据市场调研与统计,某公司七年时间里在芯片技术上的研发投入x(亿元)与收益y(亿元)的数据统计如下:(1)根据折线图的数据,求y关于x的线性回归方程(系数精确到整数部分);(2)为鼓励科技创新,当研发技术投入不少于16亿元时,国家给予公司补贴5亿元,预测当芯片的研发投入为17亿元时公司的实际收益附:其回归方程的斜率和截距的最小二乘法估计分别为,.参考数据,21.(12分)如图,在四棱锥P—ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⏊PD,E,F分别为AD,PB的中点.求证:(1)EF//平面PCD;(2)平面PAB⏊平面PCD22.(10分)设点是抛物线上异于原点O的一点,过点P作斜率为、的两条直线分别交于、两点(P、A、B三点互不相同)(1)已知点,求的最小值;(2)若,直线AB的斜率是,求的值;(3)若,当时,B点的纵坐标的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由复数的乘方运算求,再求模即可.【详解】由题设,,故2.故选:D2、B【解析】根据椭圆的定义写出,再根据条件即可解得答案.【详解】根据P为椭圆C:上一点,则有,又,所以,故选:B.3、C【解析】利用等差数列的性质和求和公式可求得的值.【详解】由等差数列的性质和求和公式可得.故选:C.4、A【解析】由题意得,表示以为圆心,2为半径的圆,表示过原点和圆上的点的直线的斜率,由图可知,当直线与圆相切时,取得最值,然后求出切线的斜率即可【详解】因为复数的模为2,所以,所以其表示以为圆心,2为半径的圆,如图所示,表示过原点和圆上的点的直线的斜率,由图可知,当直线与圆相切时,取得最值,设切线方程为,则,解得,所以的最大值为,故选:A5、D【解析】取AC的中点O,建立如图所示的空间直角坐标系,根据点到线距离的向量求法和投影的定义计算即可.【详解】由题意知,,取AC的中点O,则,建立如图所示的空间直角坐标系,则,所以,所以在上的投影的长度为,故点C到直线距离为:.故选:D6、C【解析】根据等比数列的性质及通项公式计算求解即可.【详解】由,解得或(舍去),,,故选:C7、A【解析】直接根据空间向量的线性运算,即可得到答案;【详解】,故选:A8、C【解析】先根据频率分布直方图中频率之和为计算出数据位于的频率,再利用频率分布直方图中求中位数的原则求出中位数【详解】在频率分布直方图中,所有矩形面积之和为,所以,数据位于的频率为,前两个矩形的面积之和为,前三个矩形的面积之和为,所以,中位数位于区间,设中位数为,则有,解得(岁),故选C【点睛】本题考查频率分布直方图的性质和频率分布直方图中中位数的计算,计算时要充分利用频率分布直方图中中位数的计算原理来计算,考查计算能力,属于中等题9、B【解析】根据题意,记该人每天走的路程里数为,分析可得每天走的路程里数构成以的为公比的等比数列,由求得首项即可【详解】解:根据题意,记该人每天走的路程里数为,则数列是以的为公比的等比数列,又由这个人走了6天后到达目的地,即,则有,解可得:,故选:B.【点睛】本题考查数列的应用,涉及等比数列的通项公式以及前项和公式的运用,注意等比数列的性质的合理运用.10、C【解析】根据所给的图形和一组基底,从起点出发,把不是基底中的向量,用是基底的向量来表示,就可以得到结论【详解】解:故选:【点睛】本题考查向量的基本定理及其意义,解题时注意方法,即从要表示的向量的起点出发,沿着空间图形的棱走到终点,若出现不是基底中的向量的情况,再重复这个过程,属于基础题11、C【解析】若p成立则q成立且若q成立不能得到p一定成立,p是q充分不必要条件.【详解】因为>0,<1,所以若p:成立,一定成立,但q:成立,p:不一定成立,所以p是q的充分不必要条件.故选:C.12、B【解析】取,可判断AC选项;利用等比数列的定义可判断B选项;取可判断D选项.【详解】若,则、无意义,A错C错;设等比数列的公比为,则,(常数),故数列是等比数列,B对;取,则,数列为等比数列,因为,,,且,所以,数列不是等比数列,D错.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】记“选中两人都是男生”为事件,“选中两人都是女生”为事件,“选中两人中恰有一人是女生”为事件,根据为互斥事件,与为对立事件,从而可求出答案.【详解】记“选中两人都是男生”为事件,“选中两人都是女生”为事件,“选中两人中恰有一人是女生”为事件,易知为互斥事件,与为对立事件,又,所以.故答案为:.14、【解析】根据空间向量可得,结合计算即可.【详解】由题意知,,所以,解得.故答案:315、①.②.【解析】根据个小矩形面积之和为1即可求出的值;根据频率分布直方图可以求出车速低于限速60km/h的频率,从而可求出汽车有多少辆【详解】由解得:这300辆汽车中车速低于限速60km/h的汽车有故答案为:;16、【解析】根据圆柱表面积公式求解即可.【详解】根据题意得到圆柱的高,底面半径,则表面积.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由正弦定理将边化为角,结合三角函数的两角和的正弦公式,可求得答案;(2)由余弦定理结合基本不等式可求得,再利用三角形面积公式求得答案.【小问1详解】由正弦定理及,得,∵∴,∵,∴【小问2详解】由余弦定理,∴,即,当且仅当时取等号,∴,当且仅当时等号成立,∴的面积的最大值为18、(1)(2)证明见解析【解析】(1)当时,,求出,可得答案;(2)设,,,,,设,求出利用单调性可得答案.【小问1详解】当时,,则,所以单调递增,又,当时,,单调递减,当时,,单调递增,所以.【小问2详解】设,若,则,若,则,设,则,所以单调递增,又,当时,,上单调递减,当时,,单调递增,所以,所以,综上,恒成立.【点睛】本题考查了求函数值域或最值的问题,一般都需要通过导数研究函数的单调性、极值、最值来处理,特别的要根据所求问题,适时构造恰当的函数,再利用所构造函数的单调性、最值解决问题是常用方法,考查了学生分析问题、解决问题的能力.19、(1),2(2)【解析】(1)结合,联立即得解;(2)由题意,即得解.【详解】(1)由题意,又解得:故双曲线C的标准方程为:,离心率为(2)由题意椭圆的焦点在轴上,设椭圆方程为故即椭圆方程为:20、(1)(2)85亿元【解析】(1)利用公式和数据计算即可(2)代入回归直线计算即可【小问1详解】由折线图中数据知,,,因为,所以所以y关于x的线性回归方程为【小问2详解】当时,亿元,此时公司的实际收益的预测值为亿元21、(1)见解析;(2)见解析【解析】(1)取BC中点G,连结EG,FG,推导出,,从而平面平面,由此能得出结论;(2)推导出,从而平面PAD,即得,结合得出平面PCD,由此能证明结论成立.【详解】(1)取BC中点G,连结EG,FG,∵E,F分别是AD,PB的中点,∴,,∴面,面,∵,∴平面平面,∵平面,∴平面.(2)因为底面ABCD为矩形,所以,又因为平面平面ABCD,平面平面,平面ABCD,所以平面PAD因为平面PAD,所以.又因为,,所以平面PCD因为平面PAB,所以平面平面PCD【点睛】本题考查线线垂直、线面平行、面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.22、(1);(2)3;(3);【解析】(1)根据两点之间的距离公式,结合点坐标满足抛物线,构造关于的函数关系,求其最值即可;(2)根据题意,求得点的坐标,设出的直线方程,联立抛物线方程,利用韦达定理求得点坐标,同理求得点坐标,再利用斜率计算公式求得即可;(3)根据题意,求得点的坐标,利用坐标转化,求得关于的一元二次方程,利用其有两个不相等的实数根,即可求得的取值范围.【小问1详解】因为点在抛物线上,故可得,又,当且仅当时,取得最小值.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农田抗旱供水工程项目风险评估报告
- 骨折护师考试题库及答案
- 工程力学复习试题及答案
- 城市排水设施改造提升项目运营管理方案
- 厨房开发产品补贴申请书
- 光伏发电设计规范方案
- 20251021豪宅亦需烟火气混沌定位不可取
- 城市供水主干管改造建设项目经济效益和社会效益分析报告
- 建筑保温效果评估方法
- 钢结构项目团队协作方案
- 智能安全帽解决方案-智能安全帽
- 2024年版烟雾病和烟雾综合征诊断与治疗专家共识(完整版)
- 研学旅行指导手册
- 大学生社会支持评定量表附有答案
- 植入式静脉给药装置(输液港)-中华护理学会团体标准2023
- GB/T 2988-2023高铝砖
- 东风7电路图解析
- 数字填图系统新版(RgMap2.0)操作手册
- JJF 1069-2012 法定计量检定机构考核规范(培训讲稿)
- DFMEA编制作业指导书新版
- DB35∕T 1844-2019 高速公路边坡工程监测技术规程
评论
0/150
提交评论