2026届山西省新绛县第二中学高二数学第一学期期末统考试题含解析_第1页
2026届山西省新绛县第二中学高二数学第一学期期末统考试题含解析_第2页
2026届山西省新绛县第二中学高二数学第一学期期末统考试题含解析_第3页
2026届山西省新绛县第二中学高二数学第一学期期末统考试题含解析_第4页
2026届山西省新绛县第二中学高二数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山西省新绛县第二中学高二数学第一学期期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设A=37+·35+·33+·3,B=·36+·34+·32+1,则A-B的值为()A.128 B.129C.47 D.02.己知F为抛物线的焦点,过F作两条互相垂直的直线,,直线与C交于A、B两点,直线与C交于D、E两点,则的最小值为()A.24 B.22C.20 D.163.已知直线l与抛物线交于不同的两点A,B,O为坐标原点,若直线的斜率之积为,则直线l恒过定点()A. B.C. D.4.已知长方体中,,,则平面与平面所成的锐二面角的余弦值为()A. B.C. D.5.已知双曲线(,)的左、右焦点分别为,,点A的坐标为,点P是双曲线在第二象限的部分上一点,且,点Q是线段的中点,且,Q关于直线PA对称,则双曲线的离心率为()A.3 B.2C. D.6.已知抛物线的焦点为F,且点F与圆上点的距离的最大值为6,则抛物线的准线方程为()A. B.C. D.7.棱长为1的正四面体的表面积是()A. B.C. D.8.如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A,B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为()A.y2=9x B.y2=6xC.y2=3x D.y2=x9.已知直线和圆相交于两点.若,则的值为()A. B.C. D.10.已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B.C. D.11.设实系数一元二次方程在复数集C内的根为、,则由,可得.类比上述方法:设实系数一元三次方程在复数集C内的根为,则的值为A.﹣2 B.0C.2 D.412.已知长方体的底面ABCD是边长为8的正方形,长方体的高为,则与对角面夹角的正弦值等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,,,的外接圆半径为,则边c的长为_____.14.已知空间向量,,则向量在向量上的投影向量的坐标是__________15.如图,设正方形ABCD与正方形ABEF的边长都为1,若平面ABCD,则异面直线AC与BF所成角的大小为______16.已知函数,若递增数列满足,则实数的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)求函数在区间上的最大值和最小值;(2)求出方程的解的个数18.(12分)已知圆C:的半径为1(1)求实数a的值;(2)判断直线l:与圆C是否相交?若不相交,请说明理由;若相交,请求出弦长19.(12分)某外语学校的一个社团中有7名同学,其中2人只会法语;2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问(1)在选派的3人中恰有2人会法语的概率;(2)在选派的3人中既会法语又会英语的人数X的分布列和数学期望20.(12分)已知A(-3,0),B(3,0),四边形AMBN的对角线交于点D(1,0),kMA与kMB的等比中项为,直线AM,NB相交于点P.(1)求点M的轨迹C的方程;(2)若点N也在C上,点P是否在定直线上?如果是,求出该直线,如果不是,请说明理由.21.(12分)如图,直四棱柱中,底面是边长为的正方形,点在棱上.(1)求证:;(2)从条件①、条件②、条件③这三个条件中选择两个作已知,使得平面,并给出证明.条件①:为的中点;条件②:平面;条件③:.(3)在(2)的条件下,求平面与平面夹角的余弦值.22.(10分)已知数列为等差数列,为其前n项和,若,(1)求数列的首项和公差;(2)求的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先化简A-B,发现其结果为二项式展开式,然后计算即可【详解】A-B=37-·36+·35-·34+·33-·32+·3-1=故选A.【点睛】本题主要考查了二项式定理的运用,关键是通过化简能够发现其结果在形式上满足二项式展开式,然后计算出结果,属于基础题2、A【解析】由抛物线的性质:过焦点的弦长公式计算可得.【详解】设直线,的斜率分别为,由抛物线的性质可得,,所以,又因为,所以,所以,故选:A.3、A【解析】设出直线方程,联立抛物线方程,得到,进而得到的值,将直线的斜率之积为,用A,B点坐标表示出来,结合的值即可求得答案.【详解】设直线方程为,联立,整理得:,需满足,即,则,由,得:,所以,即,故,所以直线l为:,当时,,即直线l恒过定点,故选:A.4、A【解析】建立空间直角坐标系,求得平面的一个法向量为,易知平面的一个法向量为,由求解.【详解】建立如图所示空间直角坐标系:则,所以,设平面的一个法向量为,则,即,令,则,易知平面的一个法向量为,所以,所以平面与平面所成的锐二面角的余弦值为,故选:A5、C【解析】由角平分线的性质可得,结合已知条件即可求双曲线的离心率.【详解】由题设,易知:,由知:,即,整理得:.故选:C6、D【解析】先求得抛物线的焦点坐标,再根据点F与圆上点的距离的最大值为6求解.【详解】因为抛物线的焦点为F,且点F与圆上点的距离的最大值为6,所以,解得,所以抛物线准线方程为,故选:D7、D【解析】采用数形结合,根据边长,结合正四面体的概念,计算出正三角形的面积,可得结果【详解】如图由正四面体的概念可知,其四个面均是全等的等边三角形,由其棱长为1,所以,所以可知:正四面体的表面积为,故选:D8、C【解析】过点A,B分别作准线的垂线,交准线于点E,D,设|BF|=a,利用抛物线的定义和平行线的性质、直角三角形求解【详解】如图,过点A,B分别作准线的垂线,交准线于点E,D,设|BF|=a,则由已知得|BC|=2a,由抛物线定义得|BD|=a,故∠BCD=30°,在直角三角形ACE中,因为|AE|=|AF|=3,|AC|=3+3a,2|AE|=|AC|,所以3+3a=6,从而得a=1,|FC|=3a=3,所以p=|FG|=|FC|=,因此抛物线的方程为y2=3x,故选:C.9、C【解析】求出圆心到直线的距离,再利用,化简求值,即可得到答案.【详解】圆的圆心为,圆心到直线的距离公式为,故故选:C.10、D【解析】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,故选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.11、A【解析】用类比推理得到,再用待定系数法得到,,再根据求解.【详解】,由对应系数相等得:,.故选:A.【点睛】本题主要考查合情推理以及待定系数法,还考查了转化化归的思想和逻辑推理的能力,属于中档题.12、A【解析】建立空间直角坐标系,结合空间向量的夹角坐标公式即可求出线面角的正弦值.【详解】连接,建立如图所示的空间直角坐标系∵底面是边长为8的正方形,,∴,,,因为,且,所以平面,∴,平面的法向量,∴与对角面所成角的正弦值为故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由面积公式求得,结合外接圆半径,利用正弦定理得到边c的长.【详解】,从而,由正弦定理得:,解得:故答案为:14、【解析】根据投影向量概念求解即可.【详解】因为空间向量,,所以,,所以向量在向量上投影向量为:,故答案为:.15、##【解析】建立空间直角坐标系,利用空间向量法求出异面直线所成角;【详解】解:如图建立空间直角坐标系,则、、、,所以,,设直线与所成角为,则,因为,所以;故答案为:16、【解析】根据的单调性列不等式,由此求得的取值范围.【详解】由于是递增数列,所以.所以的取值范围是.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)f(x)的最大值为7,最小值为-33;(2)见解析.【解析】(1)求函数f(x)的导数,列表求其单调性即可;(2)求出函数f(x)的极值即可.【小问1详解】023+-+f(-2)=-33↗f(0)=7↘f(2)=-1↗f(3)=7∴f(x)的最大值为7,最小值为-33;【小问2详解】02+-+↗f(0)=7↘f(2)=-1↗当a<-1或a>7时,方程有一个根;当a=-1或7时,方程有两个根;当-1<a<7时,方程有三个根.18、(1);(2)直线l与圆C相交,.【解析】(1)利用配方法进行求解即可;(2)根据点到直线距离公式,结合圆的弦长公式进行求解即可.【小问1详解】将化为标准方程得:因为圆C的半径为1,所以,得【小问2详解】由(1)知圆C的圆心为,半径为1设圆心C到直线l的距离为d,则,所以直线l与圆C相交,设其交点为A,B,则,即19、(1)(2)分布列见解析;【解析】(1)利用组合的知识计算出基本事件总数和满足题意的基本事件数,根据古典概型概率公式求得结果;(2)确定所有可能的取值,根据超几何分布概率公式可计算出每个取值对应的概率,进而得到分布列和数学期望.【小问1详解】名同学中,会法语的人数为人,从人中选派人,共有种选法;其中恰有人会法语共有种选法;选派的人中恰有人会法语的概率.【小问2详解】由题意可知:所有可能的取值为,;;;;的分布列为:数学期望为20、(1);(2)点P在定直线x=9上.理由见解析.【解析】(1)设点,根据两点坐标距离公式和等比数列的等比中项的应用列出方程,整理方程即可;(2)设直线MN方程为:,点,联立双曲线方程消去x得到关于y的一元二次方程,根据韦达定理写出,利用两点坐标和直线的点斜式方程写出直线PA、PB,联立方程组,解方程组即可.【小问1详解】设点,则,又,所以,整理,得,即轨迹M的方程C为:;【小问2详解】点P在定直线上.由(1)知,曲线C方程为:,直线MN过点D(1,0)若直线MN斜率不存在,则,得,不符合题意;设直线MN方程为:,点,则,消去x,得,有,,,,所以直线PA方程为:,直线PB方程为:,所以点P的坐标为方程组的解,有,即,整理,得,解得,即点P在定直线上.21、(1)证明见解析;(2)答案见解析;(3).【解析】(1)连结,,由直四棱柱的性质及线面垂直的性质可得,再由正方形的性质及线面垂直的判定、性质即可证结论.(2)选条件①③,设,连结,,由中位线的性质、线面垂直的性质可得、,再由线面垂直的判定证明结论;选条件②③,设,连结,由线面平行的性质及平行推论可得,由线面垂直的性质有,再由线面垂直的判定证明结论;(3)构建空间直角坐标系,求平面、平面的法向量,应用空间向量夹角的坐标表示求平面与平面夹角的余弦值.【小问1详解】连结,,由直四棱柱知:平面,又平面,所以,又为正方形,即,又,∴平面,又平面,∴.【小问2详解】选条件①③,可使平面.证明如下:设,连结,,又,分别是,的中点,∴.又,所以.由(1)知:平面,平面,则.又,即平面.选条件②③,可使平面.证明如下:设,连结.因为平面,平面,平面平面,所以,又,则.由(1)知:平面,平面,则.又,即平面.【小问3详解】由(2)可知,四边形为正方形,所以.因为,,两两垂直,如图,以为原点,建立空间直角坐标系,则,,,,,,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论