海南省三亚2026届数学高一上期末学业水平测试试题含解析_第1页
海南省三亚2026届数学高一上期末学业水平测试试题含解析_第2页
海南省三亚2026届数学高一上期末学业水平测试试题含解析_第3页
海南省三亚2026届数学高一上期末学业水平测试试题含解析_第4页
海南省三亚2026届数学高一上期末学业水平测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

海南省三亚2026届数学高一上期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了抗击新型冠状病毒肺炎,保障师生安全,学校决定每天对教室进行消毒工作,已知药物释放过程中,室内空气中含药量y()与时间t(h)成正比();药物释放完毕后,y与t的函数关系式为(a为常数,),据测定,当空气中每立方米的含药量降低到0.5()以下时,学生方可进教室,则学校应安排工作人员至少提前()分钟进行消毒工作A.25 B.30C.45 D.602.某地一年之内12个月的降水量从小到大分别为:46,48,51,53,53,56,56,56,58,64,66,71,则该地区的月降水量20%分位数和75%分位数为()A.51,58 B.51,61C.52,58 D.52,613.圆与圆的位置关系是()A.内含 B.内切C.相交 D.外切4.已知为定义在上的偶函数,,且当时,单调递增,则不等式的解集为()A. B.C. D.5.已知函数在上的值域为R,则a的取值范围是A. B.C. D.6.已知函数,则的最大值为()A. B.C. D.7.如图所示,是顶角为的等腰三角形,且,则A. B.C. D.8.下列选项中,与最接近的数是A. B.C. D.9.函数图象大致是()A. B.C. D.10.设集合,则()A.{1,3} B.{3,5}C.{5,7} D.{1,7}二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数是定义在上的奇函数,当时的图象如下所示,那么的值域是_______12.已知函数的图象过原点,且无限接近直线,但又不与该直线相交,则______13.已知函数,若a、b、c互不相等,且,则abc的取值范围是______14.已知关于x的不等式的解集为,则的解集为_________15.漏斗作为中国传统器具而存在于日常生活之中,某漏斗有盖的三视图如图所示,其中俯视图为正方形,则该漏斗的容积为不考虑漏斗的厚度______,若该漏斗存在外接球,则______.16.二次函数的部分对应值如下表:342112505则关于x不等式的解集为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,某园林单位准备绿化一块直径为的半圆形空,外的地方种草,的内接正方形为一水池,其余的地方种花,若,,,设的面积为,正方形的面积为(1)用表示和;(2)当变化时,求的最小值及此时角的大小.18.设函数.(1)若,且均为正实数,求的最小值,并确定此时实数的值;(2)若满足在上恒成立,求实数的取值范围.19.已知不等式的解集为(1)求的值;(2)求的值20.已知函数是R上的奇函数.(1)求a的值,并判断的单调性;(2)若存在,使不等式成立,求实数b的取值范围.21.已知,___________,.从①,②,③中任选一个条件,补充在上面问题中,并完成题目.(1)求值(2)求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】计算函数解析式,取计算得到答案.【详解】∵函数图像过点,∴,当时,取,解得小时分钟,所以学校应安排工作人员至少提前45分钟进行消毒工作.故选:C.2、B【解析】先把每月的降水量从小到大排列,再根据分位数的定义求解.【详解】把每月的降水量从小到大排列为:46,48,51,53,53,56,56,56,58,64,66,71,,所以该地区月降水量的分位数为;所以该地区的月降水量的分位数为.故选:B3、D【解析】根据两圆的圆心距和两半径的和与差的关系判断.【详解】因为圆与圆的圆心距为:两圆的半径之和为:,所以两圆相外切,故选:D4、B【解析】根据给定条件,探讨函数的性质,再把不等式等价转化,利用的性质求解作答.【详解】因为定义在上的偶函数,则,即是R上的偶函数,又在上单调递增,则在上单调递减,,即,因此,,平方整理得:,解得,所以原不等式的解集是.故选:B5、A【解析】利用分段函数,通过一次函数以及指数函数判断求解即可【详解】解:函数在上的值域为R,当函数的值域不可能是R,可得,解得:故选A【点睛】本题考查分段函数的应用,函数的最值的求法,属于基础题.6、D【解析】令,可得出,令,证明出函数在上为减函数,在上为增函数,由此可求得函数在区间上的最大值,即为所求.【详解】令,则,则,令,下面证明函数在上为减函数,在上为增函数,任取、且,则,,则,,,,所以,函数在区间上为减函数,同理可证函数在区间上为增函数,,,.因此,函数的最大值为.故选:D.【点睛】方法点睛:利用函数的单调性求函数最值的基本步骤如下:(1)判断或证明函数在区间上的单调性;(2)利用函数的单调性求得函数在区间上的最值.7、C【解析】【详解】∵是顶角为的等腰三角形,且∴∴故选C8、C【解析】,该值接近,选C.9、A【解析】利用函数的奇偶性排除部分选项,再利用当x>0时,函数值的正负确定选项即可.【详解】函数f(x)定义域为,所以函数f(x)是奇函数,排除BC;当x>0时,,排除D故选:A10、B【解析】先求出集合B,再求两集合的交集【详解】由,得,解得,所以,因为所以故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分析:通过图象可得时,函数的值域为,根据函数奇偶性的性质,确定函数的值域即可.详解:∵当时,函数单调递增,由图象知,当时,在,即此时函数也单调递增,且,∵函数是奇函数,∴,∴,即,∴的值域是,故答案为点睛:本题主要考查函数值域的求法,利用函数奇偶性的性质进行转化是解决本题的关键.12、##0.75【解析】根据条件求出,,再代入即可求解.【详解】因为的图象过原点,所以,即.又因为的图象无限接近直线,但又不与该直线相交,所以,,所以,所以故答案为:13、【解析】画出函数的图象,根据互不相等,且,我们令,我们易根据对数的运算性质,及c的取值范围得到abc的取值范围,即可求解【详解】由函数函数,可得函数的图象,如图所示:若a,b,c互不相等,且,令,则,,故,故答案为【点睛】本题主要考查了对数函数图象与性质的综合应用,其中画出函数图象,利用图象的直观性,数形结合进行解答是解决此类问题的关键,着重考查了数形结合思想,以及分析问题和解答问题的能力,属于中档试题14、或【解析】由已知条件知,结合根与系数关系可得,代入化简后求解,即可得出结论.【详解】关于x的不等式的解集为,可得,方程的两根为,∴,所以,代入得,,即,解得或.故答案为:或.【点睛】本题考查一元二次不等式与一元二次方程的关系,以及解一元二次不等式,属于基础题.易错点是忽视对的符号的判断.15、①.②.0.5【解析】先将三视图还原几何体,然后利用长方体和锥体的体积公式求解容积即可;设该漏斗外接球的半径为,设球心为,利用,列式求解的值即可.【详解】由题中的三视图可得,原几何体如图所示,其中,,正四棱锥的高为,,,所以该漏斗的容积为;正视图为该几何体的轴截面,设该漏斗外接球的半径为,设球心为,则,因为,又,所以,整理可得,解得,所以该漏斗存在外接球,则故答案为:①;②.16、【解析】根据所给数据得到二次函数的对称轴,即可得到,再根据函数的单调性,即可得解;【详解】解:∵,∴对称轴为,∴,又∵在上单调递减,在上单调递增,∴的解集为故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)最小值【解析】(1)在中,可用表示,从而可求其面积,利用三角形相似可得的长度,从而可得.(2)令,从而可得,利用的单调性可求的最小值.【详解】(1)在中,,所以,.而边上的高为,设斜边上的为,斜边上的高为,因,所以,故,故,.(2),令,则.令,设任意的,则,故为减函数,所以,故,此时即.【点睛】直角三角形中的内接正方形的问题,可借助于解直角三角形和相似三角形得到各边与角的关系,三角函数式的最值问题,可利用三角变换化简再利用三角函数的性质、换元法等可求原三角函数式的最值.18、(1)的最小值为3,此时;(2)【解析】(1)由可得,则由结合基本不等式即可求出;(2)不等式恒成立等价于对恒成立,利用判别式可得对恒成立,再利用判别式即可求出的范围.【详解】(1),则,,当且仅当,即时等号成立,的最小值为3,此时;(2),则,即对恒成立,则,即对恒成立,则,解得.【点睛】本题考查基本不等式的应用,考查一元二次不等式的恒成立问题,属于中档题.19、(1)(2)【解析】(1)根据根与系数的关系以及化弦为切求解即可;(2)由商数关系化弦为切求解即可.【小问1详解】依题意可知,是方程的两个实数根,所以故【小问2详解】20、(1),为上的增函数;(2).【解析】(1)由奇函数的定义即可求解的值,因为,所以由复合函数单调性的判断法则即可判断的单调性;(2)由题意,原问题等价于,令,则,利用二

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论