版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
January2026
Srinivasan(Cheenu)
Venkatachary
8min.
BuildingPersonalIntelligence:
Asteptowards
trulypersonalAI
1IntroductionPage03
2HowPersonalIntelligenceworksPage05
3ResponsibleDevelopmentPage08
4ResearchDirectionsPage12
5VisionfortheFuturePage13
03BuildingPersonalIntelligence:AsteptowardstrulypersonalAI
Introduction
Makingourproductsmorehelpfulbymakingthempersonal
AtGoogle,we’vespentyearsrefiningourproductstobenotjusthelpful,buthelpfultoyou.
Welearnedearlyonthatpersonalcontextmatters:when
someonesearchesfor“runningshoes”,theyaren’tusually
lookingforalistofgenericbestsellers,butforthespecific
brandsandstylestheyprefer.Thatinsight—thatyourhistoryandpreferencesshouldinformyourresults—enhanced
GoogleSearch,andintheyearssince,we’vebroughtthatsamelevelofpersonalizationtomanyofourproducts.
Interactingwithyourpersonalinformationhashistoricallymeantnavigatingindependentproductexperiences:
searchingforyourflightreservationrequiredopeningGmail,whilefindingamemorymeantsearchingorscrollingthrough
GooglePhotos.
Inthelastfewyears,webeganbridgingthesegapswith
featuresthatallowedforexplicitinformationretrievalacrossproductswithyourpermission—liketagging@GmailtofindflightdetailsintheGeminiapp.Wealsointroducedfeaturesthatpersonalizeyourexperienceinaspecificproduct—
likeusingyourpastchatsintheGeminiapptogiveyouamoretailoredresponse.Butthesestilldon’tprovideafullypersonalizedexperience.
Introduction
04BuildingPersonalIntelligence:AsteptowardstrulypersonalAI
IntroducingPersonalIntelligence
PersonalIntelligencemarks
theshifttoAIthatcantruly
understandyourpersonalcontext.
Itbringstogethertheinformationyoushareandtheactivitywithintheproductsyouuse,whileconnectingthedotsacrossyourGoogleappstotomakeAI
uniquelyhelpfulforyou.
WithPersonalIntelligence,youcanchoosetoconnectcertainGoogleappstogetmoretailoredresponses
—allwhileyourinformationremainssafeguarded.
Today,youcanuseabetaversionofPersonal
IntelligenceintheGeminiapp.Itsecurelyconnects
informationfromappslikeGmailandGooglePhotostomakeGeminiuniquelyhelpful.PersonalIntelligenceiscomingsoontoAIModeinSearch.
Thatmeansthe
Geminiapp
canhelpwithmore
tailoreddiscoveryandcomplexplanning—like
helpingyouplanforspringbreakbasedonplaces
you’vealreadybeenorproactivelyfindingtheperfectsetoftiresforyourspecificcarmakeandmodel.
Ifyouturnthisbetafeatureon,youcontrolwhichappstolink,andeachonesuperchargesthe
experience.
Thisisafoundationalsteptowardmovingbeyond
genericassistancetoAIthatworksforyou.It’sstill
earlydaysforthistechnology,andwe’recontinuingtoworkthroughknowntechnicalissuesandlimitations.Aswecontinuetotestandlearn,weareeagertohearyourfeedback.
05BuildingPersonalIntelligence:AsteptowardstrulypersonalAI
HowPersonalIntelligenceWorks
TheTechnicalChallenge:
SolvingtheContextPackingProblem
PersonalIntelligenceunlocksnewutilitybysolving
forthecontextpackingproblem:enablingour
Geminimodelstosafelyandaccuratelyreasonoverdisparateandvastamountsofpersonaldatasourcesinreal-timewithoutcompromisinguserprivacy.
Products
withPersonal
IntelligenceGeminiappSearch
(comingsoon)
AIModel
connected
toPersonal
Intelligence
Engine
PersonalIntelligenceEngine
Securedata
retrievalwith
userpermission
GmailPhotosMore
GeminimodelenablingPersonalIntelligence
HowPersonalIntelligenceWorks
06BuildingPersonalIntelligence:AsteptowardstrulypersonalAI
AdvancedGeminiModels&
ANewPersonalIntelligenceEngine
Tohandlethecomplexityofretrievingdatafrommultiplesourcessimultaneouslyandprovidesignificantlymorehelpfulresponsestoyou,webuiltanewengineforPersonalIntelligence.
PersonalIntelligencehastwocore
strengths:toolcallstoretrievespecificdetailsandreasoningacrossmany
complexsources.Itoftencombines
bothapproachesandcanworkacrosstext,photos,andvideotogiveyou
one-of-a-kindanswers.
ItenablesGeminimodelstosecurely
retrieverelevantcontext,leveraging
advancesintooluse,denseretrieval,andlongcontextcapabilitiestoreasonacrossyourpersonaldatafromGoogleproductsinreal-time.
AdvancedReasoning
Gemini3
,ourmostintelligentmodelseriestodate,
isbetteratgeneralunderstandinganddeciphering
moredepthandnuance—capabilitiesthatarecriticalforunderstandingcomplexpersonalcontext,such
asmappingfamilialrelationshipsorrecognizingyourspecificaestheticpreferences.
AdvancedToolUse
TheGeminimodelalsohassignificantadvancesintool
usecapabilitieswhichmeansitcanunderstandyourgoalandretrievemoreinformationrelatedtoyourpreferencesfromthePersonalIntelligenceengine.Thisretrievalalsobuildsonthefoundationofresearchwe’vedoneon
searchanddenseretrieval,suchas
GeminiEmbeddings
.
LongContext
Gemini3hasa1milliontokencontextwindowwhichenablesreasoningacrossavastamountofdata.
However,trulyhelpfulpersonalizationrequiresprocessingatamuchlargerscale,asauser’saccumulatedcontext
acrossemailsandphotosaloneoftenexceedsthiswindowbyordersofmagnitude.
Tobridgethisgap,weutilize“contextpacking”
—atechniquethathelpsusdynamicallyidentifyandsynthesizeappropriatepiecesofinformationintotheworkingmemoryforthemodel.
07BuildingPersonalIntelligence:AsteptowardstrulypersonalAI
WiththisnewengineandGemini3,wenowhavethecapabilities
requiredfortruepersonalization.
Forexample,whenyouaskGeminito“Planalistof
restaurantsformyupcomingtripthatarenearmy
hotel”,withPersonalIntelligence,youwon’tjustget
generictop-ratedspots.TheGeminimodelunderstandsthatthistaskrequiressynthesizingdisparatepersonal
detailsfromacrossGoogleproducts—yourhotel
reservations,flightarrivaltime,pastdininghistory,andtheaspirationalspotsyou’vesaved.
•Themodelagenticallyandsecurelyexecutes
searchesforthepersonalinformationthat’srelevanttotheresponse,lookingforyourtripinrecentemails,butalsootherrelevantinformationrelatedtothe
query,likepastrestaurantreservationstounderstandwhatyoulove.
•Finally,itdeliversatailoredsetofpersonal
recommendationsclosetoyourupcoming
accommodationsbymakingsenseofyourdatalikeyourphotosandemails,aswellasthingslikeyour
pastGeminiappchatconversations,SearchqueriesandYouTubehistory.
Thisfundamentallyshiftsourarchitectureand
ourapproachtopersonalization:wearemoving
towardsaworldwhere,withyourpermission,productsliketheGeminiappcansecurelyaccesscertaintypesofpersonalinformationasacontinuousstreamof
contexttoinformeveryinteraction–deliveringreal,tailoredhelpfulness.
08BuildingPersonalIntelligence:AsteptowardstrulypersonalAI
ResponsibleDevelopment
It’scriticaltodeveloptechnologylikePersonalIntelligence
responsibly.Inaccordancewith
ourAIprinciples
,weare
focusedonbuildingthistechnologysecurely,whileprotectinguserprivacyandsettingguardrailsforsensitivetopics.
Forexample,themodelaimstoavoidmakingproactiveassumptionsaboutsensitivedatalikeyourhealth,thoughitwilldiscussthisdataifyouask.
Privacy&
PersonalIntelligence
AkeyareaoffocusforuswhenbuildingPersonalIntelligencewasprotecting
userprivacyandsecurelyconnectingdatasourcesacrossGoogleapps.
Usercontrolsbydesign
Youcanchoosewhetherornottoturnthesefeaturesonorof.IntheGeminiapp,youcan
manageallyourpreferences
directlyinyoursettings
,likechoosingwhichservices—
suchasGoogleWorkspace,GooglePhotos,YouTube,
andSearch—youwanttoconnectasapartofPersonalIntelligenceinthe“ConnectedApps”settings.These
connectedappsettingsareofbydefault.
Securelyconnecteddatasources
Westartbybuildingonourbest-in-classsecurity
infrastructureandimplementadditionalindustry-leadingsafeguardstoensurethatthisdataremainsprotected
evenasitpowersnewAIexperiences.Forexample,
userdataisencryptedatrestbydefaultandprotected
intransitbetweenoursystemsusingApplicationLayer
TransportSecurity(ALTS).We’vealsodoneworkto
increaseresistancetopromptinjectionsandhaveimprovedprotectionagainstmisuseviacyberattacks.
LimitedgenerativeAItraining
Ourgoalistoimproveyourexperiencewhilekeepingyourdatasecureandunderyourcontrol.Builtwithprivacyin
mind,GeminiAppsdon’ttraindirectlyonyourGmailinboxorGooglePhotoslibrary.Toimprovefunctionalityover
time,wetrainoninfolikepromptsandresponsesinGeminiaswellassummaries,excerptsandinferencesusedtohelpansweryourprompts.Tolearnmore,visitthe
HelpCenter
.
ResponsibleDevelopment
09BuildingPersonalIntelligence:AsteptowardstrulypersonalAI
LikemanyemergingAIfeatures,PersonalIntelligenceisstill
evolving.Thistechnologymaymakemistakes—likemisinterpretingcontextormakingincorrectassumptionsaboutyouractivity.
KnownTechnical
Limitations&Issues
YoucancorrectGeminiifitmakesmistakesdirectlyviaaprompt(e.g.
rememberthatIdon’teatmeat).
We’realsoworkingtoaddressknown
issuesthroughrigorousinternaltestingandmodeltuning,butweknownew
challengeswillarise.Your
feedback
iskeytoidentifyingthemandmakingthistechnologyashelpfulaspossible.
Herearesomeofthekeytechnical
challengeswe’reworkingtoaddress:
•Overpersonalizationbasedonyourinterests
Aknownchallengeisthetendencyforthemodeltorelytooheavilyonapersonalizedinferencewhereit’snot
appropriate—aphenomenonwecall“tunnelvision”.
Example:YoumightbeabigfanofcofeeshopsandthemodelunderstandsthataspartofPersonalIntelligence.Whenyouaskitto“planatriptoAustralia”,itmay
inadvertentlyplanatripwheretheitineraryisfocusedoncofeeshops.
Example:Ifyouhaveanemailinyourinboxaboutyouremployment,itmightstartanchoringyourresponsesaroundthefactthatyou’reasoftwareengineer.
Example:Ifyouask“whatkindofsocksshouldIbuy?”,itcouldassumethatbecauseyouhaveamarathoncomingupyouareonlylookingforathleticrunningsocks.
•Mistakinganotherperson’spreferencesforyourown
Intestingwe’vealsoseenachallengearoundthemodelconflatingsubjects—forinstance,attributingafamilymember’sintereststoyou.WhenyoushareahouseholdaccountforserviceslikeYouTube,ordoresearchor
makeapurchaseforafriendorfamilymember,the
systemmaymistakeothers’preferencesasyourown.
Example:Basedonareceiptinyouremail,themodel
mightthinkyouenjoylisteningtoheavymetalandofersuggestionsonconcertsnearby,whenyouactually
purchasedtheticketsasabirthdaygiftforyourbrother.
•Incompleteinformation
Therearesomeinstanceswhereyoumightnotseeall
ofyourpersonalinformationifyouask.Alltherelevantinformationmaynothavebeenretrievedoroursystemsmightmakeinaccurateinferencesbasedonthe
informationavailable.
Example:Ifyouaskforasummaryoflastmonth’s
activities,wemightonlyhaveinformationforafractionofthem.
ResponsibleDevelopment
10BuildingPersonalIntelligence:AsteptowardstrulypersonalAI
KnownTechnical
Limitations&Issues
•Mixinguptimelines
TemporalrelevanceisaknownissueforAImodelsgenerallyandaddingpersonalhistoryaddsadditionalcomplexityandmakesittrickytomakerelevantconnections.
Example:Themodelmaymixuptiming,notingthata
graduateprogramapplicationdeadlinefromyouremailisinthepast,wheninfactit’sstillupcoming.
•Misinterpretingrelationships
Themodelalsohaschallengesunderstandingandgraspingthenuanceofrelationshipsandcomplexdynamics,
sometimesmisidentifyingfamilyroles.
Example:Itcanmisidentifyamotherforagrandmotherbasedonambiguoustextinemailsorlabelasiblingasafriend.
•Missingmajorlifechanges
Themodelwon’talwaysknowwhenamajorchangeinyourlifehasoccurred,suchasadivorceoradeathinthefamily.
Example:Themodelmightsuggestananniversarydinnerreservationforapartneryouarenolongerwith.
•Incorrectassumptions
Themodeloftenassumesthatatransactionrecordequalsacompletedaction.Itmayassumeyouboughtanitemorattendedaneventbasedonaconfirmationemail,missingthesubsequentcontextthatyoureturnedtheitemor
cancelledthereservation.
Example:Themodelcouldrecommendafollow-upbookinaseriesbecauseyouboughtthefirstone,failingtorealizeyoureturneditthenextday.
•Overlookingcorrections
Ifyoucorrectthemodelaboutyourpersonalinformation,itmightbemissedsometimes.Thisoftenhappenswithmoreambiguousprompts.
Example:Youtellthemodel,“Idon’tusuallyeatsteak,”butitsuggestsasteakhouserecommendationagainaweek
latereventhoughyougenerallydon’tprefersteak.
ResponsibleDevelopment
11BuildingPersonalIntelligence:AsteptowardstrulypersonalAI
OtherTechnicalChallenges•Balancingspeedanddepth
Deliveringtruepersonalizationrequiresmorecomplexprocessing,sowe’reconstantlynavigatingthedelicatebalancebetweenlatencyandqualitytradeofs.
Toensurethebestuserexperience,thesystem
distinguishesbetweengeneralquerieswithout
personalizationandcomplexpersonalrequestsandwe’llcontinuetoiterateonthisasourmodelsandtechnologyevolve.
Forgeneralquestionswithoutpersonalization,you’llgetafasterresponse.
Withmorepersonalquestions,youmayseea“thinking”
indicatorintheproductwhichmaysay“Personalizing”or
“PersonalIntelligence”.Thisvisualizestheprocessingstepswhilethemodelsecurelyretrievesandreasonsoveryour
personalinformationtoprovideathoroughanswer.
IntheGeminiapp,youcanalsochoosetheoption“Answernow”togetafasterresponseifyou’reusingthe“Thinking”or“Pro”models.
•Ta
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 19294-2025航空摄影技术设计规范
- GB/T 46877-2025二氧化碳捕集燃烧后二氧化碳捕集系统通用要求
- 2026年江西省水利投资集团有限公司中层管理人员招聘备考题库含答案详解
- 2025年高职会计(财务分析)试题及答案
- 2025年中职第三学年(房地产市场调研)市场分析阶段测试题及答案
- 2025年中职(环境监测技术)环境检测阶段测试题及答案
- 2025年大学二年级(税收学)税务筹划综合测试题及答案
- 2025年大学服装效果图(电脑绘图技巧)试题及答案
- 2025年中职烹饪工艺与营养(蒸菜制作工艺)试题及答案
- 2025年中职城市水利(城市水利工程)试题及答案
- 企业管理的基础工作包括哪些内容
- 学校“1530”安全教育记录表(2024年秋季全学期)
- 铝合金门窗工程技术规范
- 食材配送服务方案投标文件(技术标)
- 室性心律失常
- 《2024消费者金融知识学习偏好及行业宣教洞察报告》
- 中国高血压防治指南(2024年修订版)解读课件
- 科研项目数据保护应急预案
- 2024年土地转租的合同范本
- 附件2:慢病管理中心评审实施细则2024年修订版
- 国防装备全寿命周期管理
评论
0/150
提交评论