2026届安徽省安庆市潜山二中高二数学第一学期期末调研模拟试题含解析_第1页
2026届安徽省安庆市潜山二中高二数学第一学期期末调研模拟试题含解析_第2页
2026届安徽省安庆市潜山二中高二数学第一学期期末调研模拟试题含解析_第3页
2026届安徽省安庆市潜山二中高二数学第一学期期末调研模拟试题含解析_第4页
2026届安徽省安庆市潜山二中高二数学第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届安徽省安庆市潜山二中高二数学第一学期期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点,则满足点到直线的距离为,点到直线距离为的直线的条数有()A.1 B.2C.3 D.42.数列,,,,,中,有序实数对是()A. B.C. D.3.已知直线过点,,则直线的方程为()A. B.C. D.4.在中,已知角A,B,C所对的边为a,b,c,,,,则()A. B.C. D.15.抛物线的准线方程是A.x=1 B.x=-1C. D.6.已知抛物线,则它的焦点坐标为()A. B.C. D.7.已知空间向量,,且与互相垂直,则k的值是()A.1 B.C. D.8.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B.C. D.9.已知双曲线C:的右焦点为,一条渐近线被圆截得的弦长为2b,则双曲线C的离心率为()A. B.C.2 D.10.在中,,则边的长等于()A. B.C. D.211.已知F是抛物线x2=y的焦点,A、B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到x轴的距离为()A. B.C.1 D.12.与空间向量共线的一个向量的坐标是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数,则在点处切线的斜率为______14.机动车驾驶考试是为了获得机动车驾驶证的考试,采用全国统一的考试科目内容及合格标准,包括科目一理论考试、科目二场地驾驶技能考试、科目三道路驾驶技能考试和科目四安全文明常识考试共四项考试,考生应依次参加四项考试,前一项考试合格后才能报名参加后一项考试,考试不合格则需另行交费预约再次补考.据公安部门通报,佛山市四项考试的合格率依次为,,,,且各项考试是否通过互不影响,则一位佛山公民通过驾考四项考试至多需要补考一次的概率为______15.已知数列为严格递增数列,且对任意,都有且.若对任意恒成立,则________16.已知直线与直线垂直,则__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F分别为棱BC,CD的中点(1)求证:D1F平面A1EC1;(2)求直线AC1与平面A1EC1所成角的正弦值.18.(12分)新冠肺炎疫情发生以来,我国某科研机构开展应急科研攻关,研制了一种新型冠状病毒疫苗,并已进入二期临床试验.根据普遍规律,志愿者接种疫苗后体内会产生抗体,人体中检测到抗体,说明有抵御病毒的能力.通过检测,用表示注射疫苗后的天数,表示人体中抗体含量水平(单位:,即:百万国际单位/毫升),现测得某志愿者的相关数据如下表所示:天数123456抗体含量水平510265096195根据以上数据,绘制了散点图.(1)根据散点图判断,与(a,b,c,d均为大于0的实数)哪一个更适宜作为描述y与x关系的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果求出y关于x的回归方程,并预测该志愿者在注射疫苗后的第10天的抗体含量水平值;(3)从这位志愿者前6天的检测数据中随机抽取4天的数据作进一步的分析,记其中的y值大于50的天数为X,求X的分布列与数学期望.参考数据:3.5063.673.4917.509.4912.95519.014023.87其中.参考公式:用最小二乘法求经过点,,,,的线性回归方程的系数公式,;.19.(12分)已知抛物线:的焦点为,直线与抛物线在第一象限的交点为,且(1)求抛物线的方程;(2)经过焦点作互相垂直的两条直线,,与抛物线相交于,两点,与抛物线相交于,两点.若,分别是线段,的中点,求的最小值20.(12分)已知函数的图象在点P(0,f(0))处的切线方程是(1)求a、b的值;(2)求函数的极值.21.(12分)已知椭圆C:的焦距为,点在C上(1)求C的方程;(2)过点的直线与C交于M,N两点,点R是直线:上任意一点,设直线RM,RQ,RN的斜率分别为,,,若,,成等差数列,求的方程.22.(10分)如图,在正四棱柱中,,,点在棱上,且平面(1)求的值;(2)若,求二面角的余弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】以为圆心,为半径,为圆心,为半径分别画圆,将所求转化为求圆与圆的公切线条数,判断两圆的位置关系,从而得公切线条数.【详解】以为圆心,为半径,为圆心,为半径分别画圆,如图所示,由题意,满足点到直线的距离为,点到直线距离为的直线的条数即为圆与圆的公切线条数,因为,所以两圆外离,所以两圆的公切线有4条,即满足条件的直线有4条.故选:D【点睛】解答本题的关键是将满足点到直线的距离为,点到直线距离为的直线的条数转化为圆与圆的公切线条数,从而根据圆与圆的位置关系判断出公切线条数.2、A【解析】根据数列的概念,找到其中的规律即可求解.【详解】由数列,,,,,可知,,,,,则,解得,故有序实数对是,故选:3、C【解析】根据两点的坐标和直线的两点式方程计算化简即可.【详解】由直线的两点式方程可得,直线l的方程为,即故选:C4、B【解析】利用正弦定理求解.【详解】在中,由正弦定理得,解得,故选:B.5、C【解析】先把抛物线方程整理成标准方程,进而求得p,再根据抛物线性质得出准线方程【详解】解:整理抛物线方程得,∴p=∵抛物线方程开口向上,∴准线方程是y=﹣故答案为C【点睛】本题主要考查抛物线的标准方程和简单性质.属基础题6、D【解析】将抛物线方程化标准形式后得到焦准距,可得结果.【详解】由得,所以,所以,所以抛物线的焦点坐标为.故选:D.【点睛】关键点点睛:将抛物线方程化为标准形式是解题关键.7、D【解析】由=0可求解【详解】由题意,故选:D8、A【解析】将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.【详解】由,,可知平面将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,记的外心为,由为等边三角形,可得又,故在中,此即为外接球半径,从而外接球表面积为故选:A【点睛】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属中档题.9、A【解析】求出圆心到渐近线的距离,根据弦长建立关系即可求解.【详解】双曲线的渐近线方程为,即,则点到渐近线的距离为,因为弦长为,圆半径为,所以,即,因为,所以,则双曲线的离心率为.故选:A.10、A【解析】由余弦定理求解【详解】由余弦定理,得,即,解得(负值舍去)故选:A11、B【解析】根据抛物线的方程求出准线方程,利用抛物线的定义抛物线上的点到焦点的距离等于到准线的距离,列出方程求出,的中点纵坐标,求出线段的中点到轴的距离【详解】解:抛物线的焦点准线方程,设,,,解得,线段的中点纵坐标为,线段的中点到轴的距离为,故选:B【点睛】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离,属于基础题12、C【解析】根据空间向量共线的坐标表示即可得出结果.【详解】.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据条件求出,,再求即答案.【详解】∵,∴,则和,得,,∴,,∴,所以在点处切线的斜率为.故答案为:14、【解析】至多需要补考一次,分5种情况分别计算后再求和即可.【详解】不需要补考就通过的概率为;仅补考科目一就通过的概率为;仅补考科目二就通过的概率为;仅补考科目三就通过的概率为;仅补考科目三就通过的概率为,一位佛山公民通过驾考四项考试至多需要补考一次的概率为.故答案为:15、66【解析】根据恒成立和严格递增可得,然后利用递推求出,的值,不难发现在此两项之间的所有项为连续正整数,于是可得,,然后可解.【详解】因为,且数列为严格递增数列,所以或,若,则(矛盾),故由可得:,,,,,,,,,,,,,因,,,且数列为严格递增数列,,所以,,所以,所以故答案为:6616、-3【解析】因为直线与直线垂直,所以考点:本题考查两直线垂直的充要条件点评:若两直线方程分别为,则他们垂直的充要条件是三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)建立空间直角坐标系,利用向量法证得平面.(2)利用向量法求得直线与平面所成角的正弦值.【详解】(1)建立如图所示空间直角坐标系.,,设平面的法向量为,则,故可设.由于,所以平面.(2)直线与平面所成角为,则.18、(1)(2),4023.87(3)分布列答案见解析,数学期望:【解析】(1)由于这些点分布在一条曲线的附近,从而可选出回归方程,(2)设,,则建立w关于x的回归方程,然后根据公式和表中的数据求解回归方程即可,再将代入回归方程可求得在注射疫苗后的第10天的抗体含量水平值,(3)由题意可知x的可能取值为0,1,2,然后求对应的概率,从而可求出分布列和期望【小问1详解】根据散点图可知这些点分布在一条曲线的附近,所以更适合作为描述y与x关系的回归方程类型.【小问2详解】设,变换后可得,设,建立w关于x的回归方程,,所以所以w关于x的回归方程为,所以,当时,,即该志愿者在注射疫苗后的第10天的抗体含量水平值约为4023.87miu/mL.【小问3详解】由表格数据可知,第5,6天的y值大于50,故x的可能取值为0,1,2,,,,X的分布列为012.19、(1);(2)8.【解析】(1)写出抛物线E的准线,利用抛物线定义求出p即可作答.(2)由(1)求出焦点坐标,设出直线的方程,并与抛物线E的方程联立,由此求出C点坐标,同理可得D点坐标,列式计算作答.小问1详解】抛物线:的准线方程为:,由抛物线定义得:,解得,所以抛物线的方程为:.【小问2详解】由(1)知,点,显然直线,的斜率都存在且不为0,设直线斜率为,则的斜率为,直线的方程为:,由消去y并整理得,设,则,于得线段PQ中点,同理得,则,当且仅当,即时取“=”,所以的最小值是8.【点睛】结论点睛:抛物线方程中,字母p的几何意义是抛物线的焦点F到准线的距离,等于焦点到抛物线顶点的距离20、(1);(2)答案见解析【解析】(1)求出曲线的斜率,切点坐标,求出函数的导数,利用导函数值域斜率的关系,即可求出,(2)求出导函数的符号,判断函数的单调性即可得到函数的极值【详解】(1)因为函数的图象在点P(0,f(0))处的切线方程是,所以切线斜率是,且,求得,即点又函数,则所以依题意得解得(2)由(1)知所以令,解得或当,或;当,所以函数的单调递增区间是,,单调递减区间是所以当变化时,和变化情况如下表:0极大值极小值所以,21、(1)(2)【解析】(1)根据椭圆的焦距为,点在C上,由求解;(2)设,,,的斜率不存在时,则的方程为,与椭圆的方程联立求得M,N的坐标,由,,成等差数列求解;的斜率存在时,设的方程为,与椭圆的方程联立,然后由,,成等差数列,结合韦达定理求解;【小问1详解】解:由题意得,解得,,所以C的方程为.【小问2详解】设,,,当的斜率不存在时,则的方程为,将代入,得.因为,,成等差数列,所以,即,显然当时,方程恒成立.当的斜率存在时,设的方程为,联立得,则,.,.因为,,成等差数列,所以,即恒成立.则,解得.综

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论