贵州省遵义市务川民族中学2026届高一数学第一学期期末经典模拟试题含解析_第1页
贵州省遵义市务川民族中学2026届高一数学第一学期期末经典模拟试题含解析_第2页
贵州省遵义市务川民族中学2026届高一数学第一学期期末经典模拟试题含解析_第3页
贵州省遵义市务川民族中学2026届高一数学第一学期期末经典模拟试题含解析_第4页
贵州省遵义市务川民族中学2026届高一数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省遵义市务川民族中学2026届高一数学第一学期期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,若函数在上为减函数,且函数在上有最大值,则a的取值范围为()A. B.C. D.2.已知函数在R上为减函数,则实数a的取值范围是()A. B.C. D.3.已知函数函数有四个不同的零点,,,,且,则()A.1 B.2C.-1 D.4.已知函数的部分图象如图所示,若函数的图象由的图象向右平移个单位长度得到,则()A. B.C. D.5.已知函数在上具有单调性,则k的取值范围是()A. B.C. D.6.若函数,则()A. B.C. D.7.已知向量,满足,,且与夹角为,则()A. B.C. D.8.已知函数则的值为()A. B.0C.1 D.29.设为两条不同的直线,为三个不重合平面,则下列结论正确的是A.若,,则 B.若,,则C.若,,则 D.若,,则10.已知在定义域上是减函数,且,则的取值范围为()A.(0,1) B.(-2,1)C.(0,) D.(0,2)二、填空题:本大题共6小题,每小题5分,共30分。11.若,则a的取值范围是___________12.已知扇形的圆心角为,扇形的面积为,则该扇形的弧长为____________.13.一个几何体的三视图如图所示(单位:),则该几何体的体积为__________14.已知,若,则__________.15.已知,则____________________.16.已知函数f(x)=(5-a)x-a+1,x<1ax,x≥1,满足对任意都有成立,那么实数三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.大西洋鲑鱼每年都要逆流而上,游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速(单位:)与其耗氧量单位数之间的关系可以表示为函数,其中为常数,已知一条鲑鱼在静止时的耗氧量为100个单位;而当它的游速为时,其耗氧量为2700个单位.(1)求出游速与其耗氧量单位数之间的函数解析式;(2)求当一条鲑鱼的游速不高于时,其耗氧量至多需要多少个单位?18.已知函数(1)求的最小正周期;(2)设,求的值域和单调递减区间19.记函数=的定义域为A,g(x)=(a<1)的定义域为B.(1)求A;(2)若x∈A是x∈B的必要不充分条件,求实数a的取值范围.20.已知函数(其中)的图象上相邻两个最高点的距离为(Ⅰ)求函数的图象的对称轴;(Ⅱ)若函数在内有两个零点,求的取值范围及的值21.为贯彻党中央、国务院关于“十三五”节能减排的决策部署,2022年某企业计划引进新能源汽车生产设备.通过市场分析,全年需投人固定成本2500万元,生产百辆需另投人成本万元.由于起步阶段生产能力有限,不超过120,且经市场调研,该企业决定每辆车售价为8万元,且全年内生产的汽车当年能全部销售完.(1)求2022年的利润(万元)关于年产量(百辆)的函数关系式(利润销售额-成本);(2)2022年产量多少百辆时,企业所获利润最大?并求出最大利润.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由复合函数在上的单调性可构造不等式求得,结合已知可知;当时,,若,可知无最大值;若,可得到,解不等式,与的范围结合可求得结果.【详解】在上为减函数,解得:当时,,此时当,时,在上单调递增无最大值,不合题意当,时,在上单调递减若在上有最大值,解得:,又故选【点睛】本题考查根据复合函数单调性求解参数范围、根据分段函数有最值求解参数范围的问题;关键是能够通过分类讨论的方式得到处于不同范围时在区间内的单调性,进而根据函数有最值构造不等式;易错点是忽略对数真数大于零的要求,造成范围求解错误.2、D【解析】根据分段函数单调性,可得关于的不等式组,解不等式组即可确定的取值范围.【详解】函数在R上为减函数所以满足解不等式组可得.故选:D【点睛】本题考查了分段函数单调性的应用,根据分段函数的单调性求参数的取值范围,属于中档题.3、D【解析】将问题转化为两个函数图象的交点问题,然后结合图象即可解答.【详解】有四个不同的零点,,,,即方程有四个不同的解的图象如图所示,由二次函数的对称性,可得.因为,所以,故故选:D4、A【解析】结合图象利用五点法即可求得函数解析式.【详解】由图象可得解得,因为,所以.又因为,所以因为,所以,,即,.又因为,所以..故选:A.5、C【解析】由函数,求得对称轴的方程为,结合题意,得到或,即可求解.【详解】由题意,函数,可得对称轴的方程为,要使得函数在上具有单调性,所以或,解得或故选:C.6、C【解析】应用换元法求函数解析式即可.【详解】令,则,所以,即.故选:C7、D【解析】根据向量的运算性质展开可得,再代入向量的数量积公式即可得解.【详解】根据向量运算性质,,故选:D8、C【解析】将代入分段函数解析式即可求解.【详解】解:因为,所以,又,所以,故选:C.9、B【解析】根据线面平行线面垂直面面垂直的定义及判定定理,逐一判断正误.【详解】选项,若,,则可能平行,相交或异面:故错选项,若,,则,故正确.选项,若,,因为,,为三个不重合平面,所以或,故错选项,若,,则或,故错故选:【点睛】本题考查线面平行及线面垂直的知识,注意平行关系中有一条平行即可,而垂直关系中需满足任意性,概念辨析题.10、A【解析】根据函数的单调性进行求解即可.【详解】因为在定义域上是减函数,所以由,故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先通过的大小确定的单调性,再利用单调性解不等式即可【详解】解:且,,得,又在定义域上单调递减,,,解得故答案为:【点睛】方法点睛:在解决与对数函数相关的解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a的取值对函数增减性的影响,及真数必须为正的限制条件12、【解析】利用扇形的面积求出扇形的半径,再带入弧长计算公式即可得出结果.【详解】解:由于扇形的圆心角为,扇形的面积为,则扇形的面积,解得:,此扇形所含的弧长.故答案为:.13、【解析】几何体为一个圆锥与一个棱柱的组合体,体积为14、【解析】由已知先求得,再求得,代入可得所需求的函数值.【详解】由已知得,即,所以,而,故答案为.【点睛】本题考查函数求值中的给值求值问题,关键在于由已知的函数值求得其数量关系,代入所需求的函数解析式中,可得其值,属于基础题.15、7【解析】将两边平方,化简即可得结果.【详解】因为,所以,两边平方可得,所以,故答案为7.【点睛】本题主要考查指数的运算,意在考查对基础知识的掌握情况,属于简单题.16、【解析】利用求解分段函数单调性的方法列出不等式关系,由此即可求解【详解】由已知可得函数在R上为单调递增函数,则需满足,解得,所以实数a的取值范围为,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)24300【解析】:(1)由,可得,.(2)由题,解得:,故其耗氧量至多需要24300个单位.试题解析:(1)由题意,得,解得:,.∴游速与其耗氧量单位数之间的函数解析式为.(2)由题意,有,即,∴由对数函数的单调性,有,解得:,∴当一条鲑鱼的游速不高于时,其耗氧量至多需要24300个单位.点晴:解决函数模型应用的解答题18、(1);(2)的值域为,的递减区间为【解析】(1)先根据二倍角公式和两角和与差的公式进行化简,再求出周期即可;(2)先根据的范围求得,再结合正弦函数的性质可得到函数的值域,求得单调递减区间【详解】(1)(2)∵,,的值域为,当,即,时,单调递减,且,所以的递减区间为19、(1)(2)【解析】(1)第一步要使有意义,第二步由按分式不等式的解法求求A;(2)第一步使有意义求集合B,第二步真数大于零求解然后按照BA,求解.【小问1详解】由得:,解得或,即;【小问2详解】由得:由得BA或即或,而或故当BA时,实数的取值范围是.20、(Ⅰ);(Ⅱ),.【解析】(Ⅰ)由题意,图象上相邻两个最高点的距离为,即周期,可得,即可求解对称轴;(Ⅱ)函数在,内有两个零点,,转化为函数与函数有两个交点,即可求解的范围;在,内有两个零点,是关于对称轴是对称的,即可求解的值【详解】(Ⅰ)∵已知函数(其中)的图象上相邻两个最高点的距离为,∴,故函数.令,得+,故函数的图象的对称轴方程为+,;(Ⅱ)由(Ⅰ)可知函数.∵x∈,∴∈[,]∴-≤≤,要使函数在内有两个零点∴-<m<,且m即m的取值范围是(-,)∪(,)函数在内有两个零点,可得是关于对称轴是对称的,对称轴为=2x-,得x=,在内的对称轴x=或当m∈(-,1)时,可得=,=当m∈(-1,-)时,可得x1+x2=,∴==21、(1)(2)2022年产量为100百辆时,企业所获利润最大,最大利润为1600万元【解析】(1)直接由题意

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论