版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
深圳市龙文一对一2026届高一上数学期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是A. B.C. D.2.若函数是偶函数,则的单调递增区间为()A. B.C. D.3.英国物理学家和数学家牛顿提出了物体在常温环境下温度变化的冷却模型,设物体的初始温度为,环境温度为,其中,经过后物体温度满足(其中k为正常数,与物体和空气的接触状况有关).现有一个的物体,放在的空气中冷却,后物体的温度是,则()(参考数据:)A.1.17 B.0.85C.0.65 D.0.234.长方体中,,,E为中点,则异面直线与CE所成角为()A. B.C. D.5.如果关于x的不等式x2<ax+b的解集是{x|-1<x<3},那么ba等于()A.-9 B.9C.- D.-86.已知指数函数(,且),且,则的取值范围()A. B.C. D.7.函数的定义域为,且为奇函数,当时,,则函数的所有零点之和是()A.2 B.4C.6 D.88.直线与直线互相垂直,则这两条直线的交点坐标为()A. B.C. D.9.一条直线与两条平行线中的一条为异面直线,则它与另一条()A.相交 B.异面C.相交或异面 D.平行10.若都是锐角,且,,则A. B.C.或 D.或二、填空题:本大题共6小题,每小题5分,共30分。11.定义在R上的奇函数f(x)周期为2,则__________.12.已知,则___________13.函数的部分图象如图所示.则函数的解析式为______14.函数在一个周期内图象如图所示,此函数的解析式为___________.15.下列说法中,所有正确说法的序号是__________①终边落在轴上角的集合是;②函数图象一个对称中心是;③函数在第一象限是增函数;④为了得到函数的图象,只需把函数的图象向右平移个单位长度16.已知甲运动员的投篮命中率为0.7,乙运动员的投篮命中率为0.8,若甲、乙各投篮一次,则恰有一人命中的概率是___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知x∈R,集合A中含有三个元素3,x,x2-2x.(1)求元素x满足的条件;(2)若-2∈A,求实数x.18.已知函数在区间上的最大值为5,最小值为1(1)求,的值;(2)若正实数,满足,求的最小值19.已知(),求:(1);(2).20.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P与投入a(单位:万元)满足P=3-6,乙城市收益Q与投入a(单位:万元)满足Q=a+2,设甲城市的投入为x(单位:万元),两个城市的总收益为f(x)(单位:万元).(1)当甲城市投资50万元时,求此时公司的总收益;(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?21.近年来,国产手机因为其炫酷的外观和强大的功能,深受国人喜爱,多次登顶智能手机销售榜首.为了调查本市市民对某款国产手机的满意程度,专卖店的经理策划了一次问卷调查,让顾客对手机的“外观”和“性能”打分,其相关得分情况统计如茎叶图所示,且经理将该款手机上市五个月以来在本市的销量按月份统计如下:月份代码t12345销售量y(千克)5.65.766.26.5(1)记“外观”得分的平均数以及方差分别为,,“性能”得分的平均数以及方差分别,.若,求茎叶图中字母表示的数;并计算与;(2)根据上表中数据,建立关于的线性回归方程,并预测第6个月该款手机在本市的销售量.附:对于一组数据()其回归直线的斜率和截距的最小二乘估计公式分别为:,参考数据:
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】易知为非奇非偶函数,故排除选项A,因为,,故排除选项B、D,而在定义域上既是奇函数又是单调递增函数.故选C.2、B【解析】利用函数是偶函数,可得,解出.再利用二次函数的单调性即可得出单调区间【详解】解:函数是偶函数,,,化为,对于任意实数恒成立,,解得;,利用二次函数的单调性,可得其单调递增区间为故选:B【点睛】本题考查函数的奇偶性和对称性的应用,熟练掌握函数的奇偶性和二次函数的单调性是解题的关键.3、D【解析】根据所给公式,将所给条件中的温度相应代入,利用对数的运算求解即可.【详解】根据题意:的物体,放在的空气中冷却,后物体的温度是,有:,所以,故,即,故选:D.4、C【解析】以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角【详解】解:长方体中,,,为中点,以为原点,为轴,为轴,为轴,建立空间直角坐标系,,,,,,,,设异面直线与所成角为,则,,异面直线与所成角为故选:【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题5、B【解析】根据一元二次不等式的解集,利用根与系致的关系求出的值
,再计的值.【详解】由不等式的解集是,所以是方程的两个实数根.则,所以所以故选:B6、A【解析】根据指数函数的单调性可解决此题【详解】解:由指数函数(,且),且根据指数函数单调性可知所以,故选:A7、B【解析】根据题意可知图象关于点中心对称,由的解析式求出时的零点,根据对称性即可求出时的零点,即可求解.【详解】因为为奇函数,所以函数的图象关于点中心对称,将的图象向右平移个单位可得的图象,所以图象关于点中心对称,当时,,令解得:或,因为函数图象关于点中心对称,则当时,有两解,为或,所以函数的所有零点之和是,故选:B第II卷(非选择题8、B【解析】时,直线分别化为:,此时两条直线不垂直.时,利用两条直线垂直可得:,解得.联立方程解出即可得出.【详解】时,直线分别化为:,此时两条直线不垂直.时,由两条直线垂直可得:,解得.综上可得:.联立,解得,.∴这两条直线的交点坐标为.故选:【点睛】本题考查了直线相互垂直、分类讨论方法、方程的解法,考查了推理能力与计算能力,属于基础题.9、C【解析】如下图所示,三条直线平行,与异面,而与异面,与相交,故选C.10、A【解析】先计算出,再利用余弦的和与差公式,即可.【详解】因为都是锐角,且,所以又,所以,所以,,故选A.【点睛】本道题考查了同名三角函数关系和余弦的和与差公式,难度较大二、填空题:本大题共6小题,每小题5分,共30分。11、0【解析】以周期函数和奇函数的性质去求解即可.【详解】因为是R上的奇函数,所以,又周期为2,所以,又,所以,故,则对任意,故故答案为:012、【解析】根据同角三角函数的关系求得,再运用正弦、余弦的二倍角公式求得,由正弦和角公式可求得答案.【详解】解:因为,所以,所以,所以.故答案为:.13、【解析】由图象可得出函数的最小正周期,可求得的值,再由结合的取值范围可求得的值,即可得出函数的解析式.【详解】函数的最小正周期为,则,则,因为且函数在处附近单调递减,则,得,因,所以.所以故答案为:.14、【解析】根据所给的图象,可得到,周期的值,进而得到,根据函数的图象过点可求出的值,得到三角函数的解析式【详解】由图象可知,,,由,三角函数的解析式是函数的图象过,,把点的坐标代入三角函数的解析式,,,又,,三角函数的解析式是.故答案为:.15、②④【解析】当时,,终边不在轴上,①错误;因为,所以图象的一个对称中心是,②正确;函数的单调性相对区间而言,不能说在象限内单调,③错误;函数的图象向右平移个单位长度,得到的图象,④正确.故填②④16、38##【解析】利用相互独立事件概率乘法公式及互斥事件概率计算公式即求.【详解】∵甲运动员的投篮命中率为0.7,乙运动员的投篮命中率为0.8,∴甲、乙各投篮一次,则恰有一人命中的概率是.故答案为:0.38.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)x≠-1,且x≠0,且x≠3(2)x=-2.【解析】(1)由集合中元素的互异性可得x≠3,且x2-2x≠x,x2-2x≠3,解得x≠-1,且x≠0,且x≠3.故元素x满足的条件是x≠-1,且x≠0,且x≠3.(2)若-2∈A,则x=-2或x2-2x=-2.由于方程x2-2x+2=0无解,所以x=-2.点睛:已知一个元素属于集合,求集合中所含的参数值.具体解法:(1)确定性的运用:利用集合中元素的确定性解出参数的所有可能值.(2)互异性的运用:根据集合中元素的互异性对集合中元素进行检验18、(1)(2)【解析】(1)根据最值建立方程后可求解;(2)运用基本不等式可求解.【小问1详解】由,可得其对称轴方程为,所以由题意有,解得.【小问2详解】由(1)为,则,(当且仅当时等号成立)所以的最小值为.19、(1);(2).【解析】(1)用诱导公式化简已知式为,已知式平方后可求得;(2)已知式平方后减去,再考虑到就可求得.【详解】(1)由可得,所以,所以;(2),又因为,所以,,所以.【点睛】关键点点睛:本题解题的关键是熟记诱导公式,以及,,之间的联系即,.20、(1)43.5(万元);(2)甲城市投资72万元,乙城市投资48万元.【解析】(1)直接代入收益公式进行计算即可.(2)由收益公式写出f(x)=-x+3+26,令t=,将函数转为关于t的二次函数求最值即可.【详解】(1)当x=50时,此时甲城市投资50万元,乙城市投资70万元,所以公司的总收益为3-6+×70+2=43.5(万元).(2)由题知,甲城市投资x万元,乙城市投资(120-x)万元,所以f(x)=3-6+(120-x)+2=-x+3+26,依题意得解得40≤x≤80.故f(x)=-x+3+26(40≤x≤80).令t=,则t∈[2,4],所以y=-t2+3t+26=-(t-6)2+44.当t=6,即x=72万元时,y的最大值为44万元,所以当甲城市投资72万元,乙城市投资48万元时,总收益最大,且最大收益为44万元.【点睛】本题考查函数模型的应用,考查函数最值的求解,属于基
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大学数字媒体技术(多媒体技术)试题及答案
- 2025年大学动物科学(饲料配方)试题及答案
- 2026年装修工艺(墙面装修技术)试题及答案
- 2025年中职建筑材料(建筑材料检测)试题及答案
- 2025年中职老年人服务与管理(心理慰藉)试题及答案
- 禁毒安全班会课件
- 烟台消防安全整治工程
- 电气安全隐患排查整改标准对照表排查电气隐患请对照标准逐一排查
- 神奇基因介绍
- 2026中国武夷实业股份有限公司国际事业部招聘1人备考题库带答案详解
- 水利工程施工监理规范(SL288-2014)用表填表说明及示例
- IATF16949-质量手册(过程方法无删减版)
- 妊娠合并胆汁淤积综合征
- 河南省安阳市滑县2024-2025学年高二数学上学期期末考试试题文
- 新疆维吾尔自治区普通高校学生转学申请(备案)表
- 内镜中心年终总结
- 园林苗木容器育苗技术
- 陕西省2023-2024学年高一上学期新高考解读及选科简单指导(家长版)课件
- 儿科学热性惊厥课件
- 《高职应用数学》(教案)
- 汉堡规则中英文
评论
0/150
提交评论