版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河南省开封市兰考县等五县联考高二数学第一学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的离心率为,则该双曲线的渐近线方程为()A. B.C. D.2.已知椭圆的离心率为,双曲线的离心率为,则()A. B.C. D.3.已知数列{}满足,且,若,则=()A.-8 B.-11C.8 D.114.对于函数,下列说法正确的是()A.的单调减区间为B.设,若对,使得成立,则C.当时,D.若方程有4个不等的实根,则5.直线(t为参数)被圆所截得的弦长为()A. B.C. D.6.若等差数列的前项和为,首项,,,则满足成立的最大正整数是()A. B.C. D.7.复数的虚部为()A. B.C. D.8.某程序框图如图所示,该程序运行后输出的值是()A. B.C. D.9.已知两条直线:,:,且,则的值为()A.-2 B.1C.-2或1 D.2或-110.已知,则()A. B.C. D.11.用反证法证明命题“a,b∈N,如果ab可以被5整除,那么a,b至少有1个能被5整除.”假设内容是()A.a,b都能被5整除 B.a,b都不能被5整除C.a不能被5整除 D.a,b有1个不能被5整除12.在直三棱柱中,底面是等腰直角三角形,,点在棱上,且,则与平面所成角的正弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设等差数列的前项和为,且,,则__________.14.沈阳市某高中有高一学生600人,高二学生500人,高三学生550人,现对学生关于消防安全知识了解情况进行分层抽样调查,若抽取了一个容量为n的样本,其中高三学生有11人,则n的值等于________.15.在1和9之间插入三个数,使这五个数成等比数列,则中间三个数的积等于________.16.某校有高一学生人,高二学生人.为了解学生的学习情况,用分层抽样的方法从该校高一高二学生中抽取一个容量为的样本,已知从高一学生中抽取人,则________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知为直角梯形,,平面,,.(1)求证:平面;(2)求平面与平面所成锐二面角的余弦值.18.(12分)在数列中,,且成等比数列(1)证明数列是等差数列,并求的通项公式;(2)设数列满足,其前项和为,证明:19.(12分)如图,在四棱锥中,底面为菱形,,底面,,是的中点.(1)求证:平面;(2)求证:平面平面;(3)设点是平面上任意一点,直接写出线段长度最小值.(不需证明)20.(12分)如图,在三棱锥P-ABC中,△ABC是以AC为底的等腰直角三角形,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且,求平面MAP与平面CAP所成角的大小.21.(12分)已知圆C的圆心在直线上,且圆C经过,两点.(1)求圆C的标准方程.(2)设直线与圆C交于A,B(异于坐标原点O)两点,若以AB为直径的圆过原点,试问直线l是否过定点?若是,求出定点坐标;若否,请说明理由.22.(10分)在中,内角所对的边长分别为,是1和的等差中项(1)求角;(2)若的平分线交于点,且,求的面积
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求得,由此求得双曲线的渐近线方程.【详解】离心率,则,所以渐近线方程.故选:C2、D【解析】根据给定的方程求出离心率,的表达式,再计算判断作答.【详解】因椭圆的离心率为,则有,因双曲线的离心率为,则有,所以.故选:D3、C【解析】利用递推关系,结合取值,求得即可.【详解】因为,且,,故可得,解得(舍),;同理求得,,.故选:C.4、B【解析】函数,,,,,利用导数研究函数的单调性以及极值,画出图象A.结合图象可判断出正误;B.设函数的值域为,函数,的值域为.若对,,使得成立,可得.分别求出,,即可判断出正误C.由函数在单调递减,可得函数在单调递增,由此即可判断出正误;D.方程有4个不等的实根,则,且时,有2个不等的实根,由图象即可判断出正误;【详解】函数,,,,可得函数在上单调递减,在上单调递减,在上单调递增,当时,,由此作出函数的大致图象,如图示:A.由上述分析结合图象,可得A不正确B.设函数的值域为,函数,的值域为,对,,.,,由,若对,,使得成立,则,所以,因此B正确C.由函数在单调递减,可得函数在单调递增,因此当时,,即,因此C不正确;D.方程有4个不等的实根,则,且时,有2个不等的实根,结合图象可知,因此D不正确故选:B5、C【解析】求得直线普通方程以及圆的直角坐标方程,利用弦长公式即可求得结果.【详解】因为直线的参数方程为:(t为参数),故其普通方程为,又,根据,故可得,其表示圆心为,半径的圆,则圆心到直线的距离,则该直线截圆所得弦长为.故选:C.6、B【解析】由等差数列的,及得数列是递减的数列,因此可确定,然后利用等差数列的性质求前项和,确定和的正负【详解】∵,∴和异号,又数列是等差数列,首项,∴是递减的数列,,由,所以,,∴满足的最大自然数为4040故选:B【点睛】关键点睛:本题求满足的最大正整数的值,关键就是求出,时成立的的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.7、D【解析】直接根据.复数的乘法运算结合复数虚部的定义即可得出答案【详解】解:,所以复数的虚部为.故选:D.8、B【解析】模拟程序运行后,可得到输出结果,利用裂项相消法即可求出答案.【详解】模拟程序运行过程如下:0),判断为否,进入循环结构,1),判断为否,进入循环结构,2),判断为否,进入循环结构,3),判断为否,进入循环结构,……9),判断为否,进入循环结构,10),判断为是,故输出,故选:B.【点睛】本题主要考查程序框图,考查裂项相消法,难度不大.一般遇见程序框图求输出结果时,常模拟程序运行以得到结论.9、B【解析】两直线平行,倾斜角相等,斜率均不存在或斜率存在且相等,据此即可求解.【详解】:,:斜率不可能同时不存在,∴和斜率相等,则或,∵m=-2时,和重合,故m=1.另解:,故m=1.故选:B.10、B【解析】根据基本初等函数的导数公式及求导法则求导函数即可.【详解】.故选:B.11、B【解析】由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”考点:反证法12、C【解析】取AC的中点M,过点M作,且使得,进而证明平面,然后判断出是与平面所成的角,最后求出答案.【详解】如图,取AC的中点M,因为,则,过点M作,且使得,则四边形BDNM是平行四边形,所以.由题意,平面ABC,则平面ABC,而平面ABC,所以,又,所以平面,而所以平面,连接DA,NA,则是与平面所成的角.而,于是,.故选:.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据,利用等差数列前项和公式,列方程求出,再由,能求出【详解】等差数列的前项和为,且,,,解得,,,解得,故答案为:1014、33【解析】根据分层抽样的性质进行求解即可.【详解】因为抽取了一个容量为n的样本,其中高三学生有11人,所以有,故答案为:3315、27【解析】设公比为,利用已知条件求出,然后根据通项公式可求得答案【详解】设公比为,插入的三个数分别为,因为,所以,得,所以,故答案为:2716、【解析】根据分层抽样的等比例性质列方程,即可样本容量n.【详解】由分层抽样的性质知:,可得.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】建立空间直角坐标系.(1)方法一,利用向量的方法,通过计算,,证得,,由此证得平面.方法二,利用几何法,通过平面证得,结合证得,由此证得平面.(2)通过平面和平面的法向量,计算出平面与平面所成锐二面角的余弦值.【详解】如图,以为原点建立空间直角坐标系,可得,,,.(1)证明法一:因为,,,所以,,所以,,,平面,平面,所以平面.证明法二:因为平面,平面,所以,又因为,即,,平面,平面,所以平面.(2)由(1)知平面的一个法向量,设平面的法向量,又,,且所以所以平面的一个法向量为,所以,所以平面与平面所成锐二面角的余弦值为.【点睛】本小题主要考查线面垂直的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.18、(1)证明见解析;;(2)证明见解析【解析】(1)利用已知条件推出数列是等差数列,其公差为,首项为1,求出通项公式,结合由,,成等比数列,转化求解即可.(2)化简通项公式,利用裂项消项法,求解数列的和即可【详解】证明:(1)由,得,即,所以数列是等差数列,其公差为,首项为1,因此,,,由成等比数列,得,即,解得或(舍去),故(2)因为,所以因为,所以【点睛】方法点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,掌握一些常见的裂项技巧:①;②;③;④;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.19、(1)证明见解析(2)证明见解析(3)【解析】(1)设,连结,根据中位线定理即可证,再根据线面平行的判定定理,即可证明结果;(2)由菱形的性质可知,可证,又底面,可得,再根据面面垂直的判定定理,即可证明结果;(3)根据等体积法,即,经过计算直接写出结果即可.【小问1详解】证明:设,连结.因为底面为菱形,所以为的中点,又因为E是PC的中点,所以.又因为平面,平面,所以平面.【小问2详解】证明:因为底面为菱形,所以.因为底面,所以.又因为,所以平面.又因为平面,所以平面平面.【小问3详解】解:线段长度的最小值为.20、(1)证明见解析(2)【解析】(1)接BO,由是等边三角形得,由得出,再利用线面垂直的判断定理可得平面;(2)建立以为坐标原点,分别为轴的空间直角坐标系,求出平面的法向量、平面的法向量,利用二面角的向量求法可得答案.【小问1详解】连接BO,由已知△ABC是以AC为底的等腰直角三角形,且PA=PB=PC=AC=4,O为AC的中点,则是等边三角形,,,在中,,满足,即是直角三角形,则,又,平面,所以平面.【小问2详解】建立以为坐标原点,分别为轴的空间直角坐标系如图所示,则,,,,则平面的法向量为,由已知,得到点坐标,,设平面的法向量则,令,则,即,设平面MAP与平面CAP所成角为,则,则平面MAP与平面CAP所成角为.21、(1)(2)过定点,定点为【解析】(1)设出圆C的标准方程,由题意列出方程从而可得答案.(2)设,,将直线的方程与圆C的方程联立,得出韦达定理,由条件可得,从而得出答案.【小问1详解】设圆C的标准方程为由题意可得解得,,.故圆C的标准方程为.【小问2详解】设,.联立整理的,则,,故.因为以AB为直径的圆过原点,所以,即则,化简得.当时,直线,直线l过原点,此时不满足以AB为直径的圆过原点.所以,则,则直线过定点.22、(1);(2)【解析】(1)根据是1和的等差中项得到,再利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 加油站安全管理三级教育考试试题含答案
- 球罐检罐施工方案
- 2025年特殊作业试题卷及答案
- (2025年)医疗器械监督管理条例培训试题及答案
- 2025年消防情景模拟题目及答案
- 施工总体交通导行方案
- 2026年组织部个人年度工作总结
- 患者误吸时的应急预案课件
- 2025年电工技师配电箱线路绝缘电阻检测方法实战训练试卷及答案
- 建设工程施工合同纠纷要素式起诉状模板格式有效规范
- 信访工作系列知识培训课件
- 压力变送器拆校课件
- 2025年高考真题分类汇编必修二 《经济与社会》(全国)(原卷版)
- 支撑粱施工方案
- 2026届高考英语二轮复习:2025浙江1月卷读后续写 课件
- 2.3.2 中国第一大河-长江 课件 湘教版地理八年级上册
- 2025贵州省某大型国有企业招聘光伏、风电项目工作人员笔试备考题库及答案解析
- 导致老年人跌倒的用药风险研究
- GB 21256-2025粗钢生产主要工序单位产品能源消耗限额
- 经颅磁刺激在神经疾病治疗中的应用
- 装修工人出意外合同范本
评论
0/150
提交评论