版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江苏省亭湖高级中学高二上数学期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示,为了测量A,B处岛屿的距离,小张在D处观测,测得A,B分别在D处的北偏西、北偏东方向,再往正东方向行驶10海里至C处,观测B在C处的正北方向,A在C处的北偏西方向,则A,B两处岛屿间的距离为()海里.A. B.C. D.102.已知1与5的等差中项是,又1,,,8成等比数列,公比为,则的值为()A.5 B.4C.3 D.63.已知,则的最小值是()A.3 B.8C.12 D.204.设,是两个不同的平面,是直线且.“”是“”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件5.已知命题:,使;命题:,都有,则下列结论正确的是()A.命题“”是真命题: B.命题“”是假命题:C.命题“”是假命题: D.命题“”是假命题6.已知四棱锥,底面为平行四边形,分别为,上的点,,设,则向量用为基底表示为()A. B.C. D.7.设是双曲线与圆在第一象限的交点,,分别是双曲线的左,右焦点,若,则双曲线的离心率为()A. B.C. D.8.函数在上的最小值为()A. B.4C. D.9.已知圆,则圆上的点到坐标原点的距离的最小值为()A.-1 B.C.+1 D.610.设函数,则()A.1 B.5C. D.011.已知命题,,则A., B.,C., D.,12.已知不等式解集为,下列结论正确的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若斜率为的直线与椭圆交于,两点,且的中点坐标为,则___________.14.已知,为椭圆C的焦点,点P在椭圆C上,,则的面积为___________.15.等差数列的公差,是其前n项和,给出下列命题:若,且,则和都是中的最大项;给定n,对于一些,都有;存在使和同号;.其中正确命题的序号为___________.16.已知5道试题中有3道代数题和2道几何题,每次从中抽取一道题,抽出的题不再放回,在第1次抽到代数题的条件下,第2次抽到几何题的概率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知三棱柱的侧棱与底面垂直,,,和分别是和的中点,点在直线上,且.(1)证明:无论取何值,总有;(2)是否存在点,使得平面与平面所成角为?若存在,试确定点的位置;若不存在,请说明理由.18.(12分)已知圆的圆心在第一象限内,圆关于直线对称,与轴相切,被直线截得的弦长为.(1)求圆的方程;(2)若点,求过点的圆的切线方程.19.(12分)已知圆过点,,且圆心在直线:上.(1)求圆的方程;(2)若从点发出的光线经过轴反射,反射光线刚好经过圆心,求反射光线的方程.20.(12分)已知椭圆的左,右顶点分别是,,且,是椭圆上异于,的不同的两点(1)若,证明:直线必过坐标原点;(2)设点是以为直径的圆和以为直径的圆的另一个交点,记线段的中点为,若,求动点的轨迹方程21.(12分)某市为加强市民对新冠肺炎的知识了解,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),共5人,第2组[25,30),共35人,第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)求a的值;(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场宣传活动,且该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第3组至少有-名志愿者被抽中的概率.22.(10分)求函数在区间上的最大值和最小值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分别在和中,求得的长度,再在中,利用余弦定理,即可求解.【详解】如图所示,可得,所以,在中,可得,在直角中,因为,所以,在中,由余弦定理可得,所以.故选:C.2、A【解析】由等差中项的概念列式求得值,再由等比数列的通项公式列式求解,则答案可求.【详解】由题意,,则;又1,,,8成等比数列,公比为,,即,,故选:.3、A【解析】利用基本不等式进行求解即可.【详解】因为,所以,当且仅当时取等号,即当时取等号,故选:A4、B【解析】,得不到,因为可能相交,只要和的交线平行即可得到;,,∴和没有公共点,∴,即能得到;∴“”是“”的必要不充分条件.故选B考点:必要条件、充分条件与充要条件的判断.【方法点晴】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念,属于基础题;并得不到,根据面面平行的判定定理,只有内的两相交直线都平行于,而,并且,显然能得到,这样即可找出正确选项.5、B【解析】根据正弦函数的性质判断命题为假命题,由判断命题为真命题,从而得出答案.【详解】因为的值域为,所以命题为假命题因为,所以命题为真命题则命题“”是假命题,命题“”是假命题,命题“”是真命题,命题“”是真命题故选:B6、D【解析】通过寻找封闭的三角形,将相关向量一步步用基底表示即可.【详解】.故选:D7、B【解析】先由双曲线定义与题中条件得到,,求出,,再由题意得到,即可根据勾股定理求出结果.【详解】解:根据双曲线定义:,,∴,∴,,,∴是圆的直径,∴,中,,得故选【点睛】本题主要考查求双曲线的离心率,熟记双曲线的简单性质即可,属于常考题型.8、D【解析】求出导数,由导数确定函数在上的单调性与极值,可得最小值【详解】,所以时,,递减,时,,递增,所以是在上的唯一极值点,极小值也是最小值.故选:D9、A【解析】先求出圆心和半径,求出圆心到坐标原点的距离,从而求出圆上的点到坐标原点的距离的最小值.【详解】变形为,故圆心为,半径为1,故圆心到原点的距离为,故圆上的点到坐标原点的距离最小值为.故选:A10、B【解析】由题意结合导数的运算可得,再由导数的概念即可得解.【详解】由题意,所以,所以原式等于.故选:B.11、A【解析】根据全称命题与特称命题互为否定的关系,即可求解,得到答案【详解】由题意,根据全称命题与特称命题的关系,可得命题,,则,,故选A【点睛】本题主要考查了含有一个量词的否定,其中解答中熟记全称命题与特称性命题的关系是解答的关键,着重考查了推理与运算能力,属于基础题12、C【解析】根据不等式解集为,得方程的解为或,且,利用韦达定理即可将用表示,即可判断各选项的正误.【详解】解:因为不等式解集为,所以方程的解为或,且,所以,所以,所以,故ABD错误;,故C正确.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、-1【解析】根据给定条件设出点A,B的坐标,再借助“点差法”即可计算得解.【详解】依题意,线段的中点在椭圆C内,设,,由两式相减得:,而,于是得,即,所以.故答案为:14、##【解析】设,然后根据椭圆的定义和余弦定理列方程组可求出,再由三角形的面积公式可求得结果【详解】由,得,则,设,则,在中,,由余弦定理得,,所以,所以,所以,所以,故答案为:15、【解析】对,根据数列的单调性和可判断;对和,利用等差数列的通项公式可直接推导;对,利用等差数列的前项和可直接推导.【详解】不妨设等差数列的首项为对,,可得:,解得:,即又,则是递减的,则中的前5项均为正数,所以和都是中的最大项,故正确;对,,故有:,故正确;对,,又,则,说明不存在使和同号,故错误;对,有:故并不是恒成立的,故错误故答案为:16、.【解析】设事件:第1次抽到代数题,事件:第2次抽到几何题,求得,结合条件概率的计算公式,即可求解.【详解】由题意,从5道试题中有3道代数题和2道几何题,每次从中抽取一道题,抽出不再放回,设事件:第1次抽到代数题,事件:第2次抽到几何题,则,,所以在第1次抽到代数题的条件下,第2次抽到几何题的概率为:.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)不存在,理由见解析.【解析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,计算得出,即可得出结论;(2)计算出平面的一个法向量,利用空间向量法可得出关于的方程,即可得出结论.【详解】(1)因为平面,,以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、,,,所以,,则,因此,无论取何值,总有;(2),设平面的法向量为,则,取,则,,所以,平面的一个法向量为,易知平面的一个法向量为,由题意可得,整理可得,,此方程无解,因此,不存在点,使得平面与平面所成的角为.18、(1)(2)或【解析】(1)结合点到直线的距离公式、弦长公式求得,由此求得圆的方程.(2)根据过的圆的切线的斜率是否存在进行分类讨论,结合点到直线的距离公式求得切线方程.【小问1详解】由题意,设圆的标准方程为:,圆关于直线对称,圆与轴相切:…①点到的距离为:,圆被直线截得的弦长为,,结合①有:,,又,,,圆的标准方程为:.【小问2详解】当直线的斜率不存在时,满足题意当直线的斜率存在时,设直线的斜率为,则方程为.又圆C的圆心为,半径,由,解得.所以直线方程为,即即直线的方程为或.19、(1);(2)【解析】(1)根据题意设圆心,利用两点坐标公式求距离公式表示出,解出,确定圆心坐标和半径,进而得出圆的标准方程;(2)根据点关于坐标轴对称的点的特征可得,利用直线的两点式方程即可得出结果.【小问1详解】圆过点,,因为圆心在直线::上,设圆心,又圆过点,,所以,即,解得,所以,所以故圆的方程为:;【小问2详解】点关于轴的对称点,则反射光线必经过点和点,由直线的两点式方程可得,即:.20、(1)证明见解析;(2).【解析】(1)设,首先证明,从而可得到,即得到;进而可得到四边形为平行四边形;再根据为的中点,即可证明直线必过坐标原点(2)设出直线的方程,与椭圆方程联立,消元,写韦达;根据条件可求出直线MN过定点,从而可得到过定点,进而可得到点在以为直径的圆上运动,从而可求出动点的轨迹方程【小问1详解】设,则,即因为,,所以因为,所以,所以.同理可证.因为,,所以四边形为平行四边形,因为为的中点,所以直线必过坐标原点【小问2详解】当直线的斜率存在时,设直线的方程为,,联立,整理得,则,,.因为,所以,因为,解得或.当时,直线的方程为过点A,不满足题意,所以舍去;所以直线的方程为,所以直线过定点.当直线的斜率不存在时,因为,所以直线的方程为,经验证,符合题意.故直线过定点.因为为的中点,为的中点,所以过定点.因为垂直平分公共弦,所以点在以为直径的圆上运动,该圆的半径,圆心坐标为,故动点的轨迹方程为.21、(1)0.04;(2).【解析】(1)根据频率的计算公式,结合概率之和为1,即可求得参数;(2)根据题意求得抽样比以及第三组和第四组各抽取的人数,再列举所有可能抽取的情况,找出满足题意的情况,利用古典概型的概率计算公式即可求得结果.【小问1详解】第一组频率为,第二组的频率为,则第一组与第二组的频率之和为,又,故.【小问2详解】第3组的人数为,第4组的人数为,第5组的人数为,因为第3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 丁苯橡胶装置操作工岗前竞争分析考核试卷含答案
- 2025呼伦贝尔扎兰屯市中小学教师竞争性比选62人备考题库附答案
- 淀粉加工工岗前安全文明考核试卷含答案
- 玻璃钢制品喷射工安全文化水平考核试卷含答案
- 电工合金熔炼及热变形工安全风险能力考核试卷含答案
- 地毯设计师岗前设备考核试卷含答案
- 炭素压型工诚信道德模拟考核试卷含答案
- 玻纤制品后处理工岗前技术基础考核试卷含答案
- 2024年黑龙江省特岗教师招聘真题汇编附答案
- 2024年豫章师范学院辅导员考试笔试真题汇编附答案
- 人工智能推动金融数据治理转型升级研究报告2026
- 2026长治日报社工作人员招聘劳务派遣人员5人备考题库含答案
- 期末教师大会上校长精彩讲话:师者当备三盆水(洗头洗手洗脚)
- 2026年潍坊职业学院单招综合素质笔试备考试题附答案详解
- 工兵基础知识课件
- 2026年贵州省交通综合运输事务中心和贵州省铁路民航事务中心公开选调备考题库及答案详解参考
- 2025四川雅安市名山区茗投产业集团有限公司招聘合同制员工10人参考题库附答案
- 人工智能应用与实践 课件 -第5章-智能体开发与应用
- 2025浙江绍兴越城黄酒小镇旅游开发有限公司编外人员第二次招聘总笔试历年典型考点题库附带答案详解2套试卷
- 聘用2025年3D建模合同协议
- 2025-2026学年西南大学版小学数学六年级(上册)期末测试卷附答案(3套)
评论
0/150
提交评论