版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市朝阳区北京八十中学2026届高二数学第一学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知F是椭圆C的一个焦点,B是短轴的一个端点,直线BF与椭圆C的另一个交点为D,且,则C的离心率为()A. B.C. D.2.在长方体中,若,,则异而直线与所成角的余弦值为()A. B.C. D.3.已知分别表示随机事件发生的概率,那么是下列哪个事件的概率()A事件同时发生B.事件至少有一个发生C.事件都不发生D事件至多有一个发生4.已知P是椭圆上的一点,是椭圆的两个焦点且,则的面积是()A. B.2C. D.15.下列椭圆中,焦点坐标是的是()A. B.C. D.6.过点且平行于直线的直线方程为()A. B.C. D.7.椭圆的焦点坐标为()A., B.,C., D.,8.已知椭圆的右焦点和右顶点分别为F,A,离心率为,且,则n的值为()A.4 B.3C.2 D.9.已知,向量,,若,则x的值为()A.-1 B.1C.-2 D.210.若直线与平行,则m的值为()A.-2 B.-1或-2C.1或-2 D.111.将的展开式按x的降幂排列,第二项不大于第三项,若,且,则实数x的取值范围是()A. B.C. D.12.若,则x的值为()A.4 B.6C.4或6 D.8二、填空题:本题共4小题,每小题5分,共20分。13.已知不等式有且只有两个整数解,则实数a的范围为___________14.若函数是上的增函数,则实数的取值范围是__________.15.若点P为双曲线上任意一点,则P满足性质:点P到右焦点的距离与它到直线的距离之比为离心率e,若C的右支上存在点Q,使得Q到左焦点的距离等于它到直线的距离的6倍,则双曲线的离心率的取值范围是______16.已知离心率为,且对称轴都在坐标轴上的双曲线C过点,过双曲线C上任意一点P,向双曲线C的两条渐近线分别引垂线,垂足分别是A,B,点O为坐标原点,则四边形OAPB的面积为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线过点,且被两条平行直线,截得的线段长为.(1)求的最小值;(2)当直线与轴平行时,求的值.18.(12分)已知椭圆的左、右焦点分别为,,离心率为,过的直线与椭圆交于,两点,若的周长为8.(1)求椭圆的标准方程;(2)设为椭圆上的动点,过原点作直线与椭圆分别交于点、(点不在直线上),求面积的最大值.19.(12分)某高校自主招生考试分笔试与面试两部分,每部分考试成绩只记“通过”与“不通过”,两部分考试都“通过”者,则考试“通过”,并给予录取.甲、乙两人在笔试中“通过”的概率依次为,在面试中“通过”的概率依次为,笔试和面试是否“通过”是独立的,那么(1)甲、乙两人都参加此高校的自主招生考试,谁获得录取的可能性大?(2)甲、乙两人都参加此高校的自主招生考试,求恰有一人获得录取的概率.20.(12分)在如图三角形数阵中第n行有n个数,表示第i行第j个数,例如,表示第4行第3个数.该数阵中每一行的第一个数从上到下构成以m为公差的等差数列,从第三行起每一行的数从左到右构成以m为公比的等比数列(其中).已知.(1)求m及;(2)记,求.21.(12分)如图所示,是棱长为的正方体,是棱的中点,是棱的中点(1)求直线与平面所成角的正弦值;(2)求到平面的距离22.(10分)某消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识,组织方从参加活动的群众中随机抽取120名群众,按年龄将这120名群众分成5组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.(1)求图中m的值;(2)估算这120名群众的年龄的中位数(结果精确到0.1);(3)已知第1组群众中男性有2人,组织方要从第1组中随机抽取2名群众组成维权志愿者服务队,求恰有一名女性的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设,根据得,代入椭圆方程即可求得离心率.【详解】设椭圆方程,所以,设,所以,所以,在椭圆上,所以,.故选:A2、C【解析】通过平移把异面直线平移到同一平面中,所以取,的中点,易知且过中心点,所以异而直线与所成角为和所成角,通过解三角形即可得解.【详解】根据长方体的对称性可得体对角线过中心点,取,的中点,易知且过中心点,所以异而直线和所成角为和所成角,连接,在中,,,,所以则异而直线与所成角的余弦值为:,故选:C.3、C【解析】表示事件至少有一个发生概率,据此得到答案.【详解】分别表示随机事件发生的概率,表示事件至少有一个发生的概率,故表示事件都不发生的概率.故选:C.4、A【解析】设,先求出m、n,再利用面积公式即可求解.【详解】在中,设,则,解得:.因为,所以,所以的面积是.故选:A5、B【解析】根据给定条件逐一分析各选项中的椭圆焦点即可判断作答.【详解】对于A,椭圆的焦点在x轴上,A不是;对于B,椭圆,即,焦点在y轴上,半焦距,其焦点为,B是;对于C,椭圆,即,焦点在y轴上,半焦距,其焦点为,C不是;对于D,椭圆,即,焦点在y轴上,半焦距,其焦点为,D不是.故选:B6、A【解析】设直线的方程为,代入点的坐标即得解.【详解】解:设直线的方程为,把点坐标代入直线方程得.所以所求的直线方程为.故选:A7、A【解析】由题方程化为椭圆的标准方程求出c,则椭圆的焦点坐标可求【详解】由题得方程可化为,所以所以焦点为故选:A.8、B【解析】根据椭圆方程及其性质有,求解即可.【详解】由题设,,整理得,可得.故选:B9、D【解析】根据给定条件利用空间向量垂直的坐标表示计算作答.【详解】因向量,,,则,解得,所以x的值为2.故选:D10、C【解析】利用两直线平行的判定有,即可求参数值.【详解】由题设,,可得或.经验证不重合,满足题意,故选:C.11、A【解析】按照二项展开式展开表示出第二项第三项,解不等式即可.【详解】由二项展开式,第二项为:,第三项为:,依题意,两边约去得到,即,由知,则,同时约去得到.故选:A.12、C【解析】根据组合数的性质可求解.【详解】,或,即或.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】参变分离后研究函数单调性及极值,结合与相邻的整数点的函数值大小关系求出实数a的范围.【详解】整理为:,即函数在上方及线上存在两个整数点,,故显然在上单调递增,在上单调递减,且与相邻的整数点的函数值为:,,,,显然有,要恰有两个整数点,则为0和1,此时,解得:,如图故答案为:14、【解析】由题意知在上恒成立,从而结合一元二次不等式恒成立问题,可列出关于的不等式,进而可求其取值范围.【详解】解:由题意知,知在上恒成立,则只需,解得.故答案为:.【点睛】本题考查了不等式恒成立问题,考查了运用导数探究函数的单调性.一般地,由增函数可得导数不小于零,由减函数可得导数不大于零.对于一元二次不等式在上恒成立问题,如若在上恒成立,可得;若在上恒成立,可得.15、【解析】若Q到的距离为有,由题设有,结合双曲线离心率的性质,即可求离心率的范围.【详解】由题意,,即,整理有,所以或,若Q到的距离为,则Q到左、右焦点的距离分别为、,又Q在C的右支上,所以,则,又,综上,双曲线的离心率的取值范围是.故答案为:【点睛】关键点点睛:若Q到的距离为,根据给定性质有Q到左、右焦点的距离分别为、,再由双曲线性质及已知条件列不等式组求离心率范围.16、2【解析】由离心率为,∴双曲线为等轴双曲线,设双曲线方程为,可得双曲线方程为,设,则到两渐近线的距离为,,从而可求四边形的面积【详解】由离心率为,∴双曲线为等轴双曲线,设双曲线方程为,又双曲线过点,,∴,故双曲线方程为,∴渐近线方程为,设,则到两渐近线的距离为,,且,∵渐近线方程为,∴四边形为矩形,∴四边形的面积为故答案为:2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)3;(2)5【解析】(1)由题可得和的距离即为的最小值;(2)可得此时直线的方程为,求出交点坐标即可求出距离.【详解】(1)由题可得当且时,取得最小值,即和的距离,由两平行线间的距离公式,得,所以的最小值为3.(2)当直线与轴平行时,方程为,设直线与直线,分别交于点,,则,,所以,即,所以.18、(1);(2).【解析】(1)根据周长可求,再根据离心率可求,求出后可求椭圆的方程.(2)当直线轴时,计算可得的面积的最大值为,直线不垂直轴时,可设,联立直线方程和椭圆方程可求,设与平行且与椭圆相切的直线为:,结合椭圆方程可求的关系,从而求出该直线到直线的距离,从而可求的面积的最大值为.【详解】(1)由椭圆的定义可知,的周长为,∴,,又离心率为,∴,,所以椭圆方程为.(2)当直线轴时,;当直线不垂直轴时,设,,,∴.设与平行且与椭圆相切的直线为:,,∵,∴,∴距的最大距离为,∴,综上,面积的最大值为.【点睛】方法点睛:求椭圆的标准方程,关键是基本量的确定,而面积的最值的计算,则可以转化为与已知直线平行且与椭圆相切的直线与已知直线的距离来计算,此类转化为面积最值计算过程的常规转化.19、(1)甲获得录取的可能性大;(2)【解析】(1)利用独立事件的乘法公式求出甲、乙两人被录取的概率并比较大小,即得结果.(2)应用对立事件、独立事件的概率求法,结合互斥事件的加法公式求恰有一人获得录取的概率.【小问1详解】记“甲通过笔试”为事件,“甲通过面试”为事件,“甲获得录取”为事件A,“乙通过笔试”为事件,“乙通过面试”为事件,“乙获得录取”为事件B,则,,即,所以甲获得录取的可能性大.【小问2详解】记“甲乙两人恰有一人获得录取”为事件C,则.20、(1),;(2)【解析】(1)根据题意以m表示出,由即可求出,进而求出;(2)根据等差数列和等比数列的通项公式求出,再利用错位相减法即可求出.【详解】(1)由已知得,,,,,即,又,,,;(2)由(1)得,当时,,又,,满足,,,两式相减得,.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于结构,其中是等差数列,是等比数列,用错位相减法求和;(3)对于结构,利用分组求和法;(4)对于结构,其中是等差数列,公差为,则,利用裂项相消法求和.21、(1)(2)【解析】(1)以为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得直线与平面所成角的正弦值;(2)求出平面的法向量,利用空间向量法可求得到平面的距离.【小问1详解】解:以为坐标原点,、、所在直线分别为、、轴建立如下图所示的坐标系则、、、、、、,所以,,设平面的一个法向量为,,,由,取,可得,所以,,直线与平面所成角的正弦为小问2详解】解:设平面的一个法向量,,,由,即,令,得,,所以点到平面的距离为即到平面的距离为22、(1)(2)(3)【解析】(1)由频率分布直方图中所有频率和为1求出;(2)求出概率对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 养老院心理慰藉制度
- 企业财务管理规范制度
- 2026浙江雷博人力资源开发有限公司招聘12人(面向分包单位)参考题库附答案
- 2026湖北省定向浙江大学选调生招录备考题库附答案
- 2026甘肃省西北民族大学专任教师招聘50人备考题库附答案
- 2026福建武夷交通运输股份有限公司建阳分公司招聘客运驾驶员参考题库附答案
- 2026福建福州新区(长乐区)事业单位招聘青年人才12人备考题库附答案
- 2026辽宁中国医科大学附属医院招聘高层次和急需紧缺人才327人(第一批)备考题库附答案
- 2026重庆巴岳保安服务有限公司招聘1人备考题库附答案
- 2026顺义区大孙各庄社区卫生服务中心第一次编外招聘4人考试备考题库附答案
- 海洋电子信息产业现状与发展路径研究
- 草原管护考试题及答案
- Unit 8 Let's Communicate!Section B 1a-1e 课件 2025-2026学年人教版八年级英语上册
- 2026年四川单招职高语文基础知识练习与考点分析含答案
- 2026年交管12123驾照学法减分题库100道【基础题】
- 寒假女生安全教育课件
- 2026年孝昌县供水有限公司公开招聘正式员工备考题库及1套参考答案详解
- 2024-2025学年苏教版四年级数学上册 第二单元专练:经济问题和促销问题(买几送几)原卷版+解析
- 6.2 中位数与箱线图 教学设计(2课时)2025-2026学年数学北师大版八年级上册
- 2024年常州工业职业技术学院单招职业适应性测试题库附答案解析
- 呼吸内科主任谈学科建设
评论
0/150
提交评论