版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省运城市临猗中学2026届高一上数学期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D.22.把11化为二进制数为A. B.C. D.3.已知函数在区间上单调递增,且在区间上只取得一次最大值,则取值范围是()A. B.C. D.4.某学校在数学联赛的成绩中抽取100名学生的笔试成绩,统计后得到如图所示的分布直方图,这100名学生成绩的中位数估值为A.80 B.82C.82.5 D.845.设向量不共线,向量与共线,则实数()A. B.C.1 D.26.若函数f(x)满足“对任意x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”,则f(x)解析式可以是()A.f(x)=(x-1)2 B.f(x)=exC.f(x)= D.f(x)=ln(x+1)7.下列各组函数是同一函数的是()①与②与③与④与A.②④ B.③④C.②③ D.①④8.已知集合,则=A. B.C. D.9.若,则的值为()A. B.C. D.10.函数的零点所在的区间是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,,若对任意的,都存在,使得,则实数的取值范围为_________.12.已知扇形的弧长为2cm,圆心角为1rad,则扇形的面积为______.13.函数在[1,3]上的值域为[1,3],则实数a的值是___________.14.已知函数,又有定义在R上函数满足:(1),,均恒成立;(2)当时,,则_____,函数在区间中的所有零点之和为_______.15.已知函数,若存在,使得f()=g(),则实数a的取值范围为___16.已知符号函数sgn(x),则函数f(x)=sgn(x)﹣2x的所有零点构成的集合为_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.将函数的图象向左平移个单位后得到函数的图象,设函数(1)求函数的最小正周期;(2)若对任意恒成立,求实数m的取值范围18.(1)计算:;(2)已知,,求证:19.设函数,.用表示,中的较大者,记为.已知关于的不等式的解集为(1)求实数,的值,并写出的解析式;20.已知二次函数满足,且.(1)求函数在区间上的值域;(2)当时,函数与的图像没有公共点,求实数的取值范围.21.已知函数(1)若的定义域为R,求a的取值范围;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.【详解】根据圆柱的三视图以及其本身的特征,将圆柱的侧面展开图平铺,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.2、A【解析】11÷2=5…15÷2=2…12÷2=1…01÷2=0…1故11(10)=1011(2)故选A.3、C【解析】根据三角恒等变换化简,结合函数单调区间和取得最值的情况,利用整体法即可求得参数的范围.【详解】因为,因为在区间上单调递增,由,则,则,解得,即;当时,,要使得该函数取得一次最大值,故只需,解得;综上所述,的取值范围为.故选:C.第II卷4、B【解析】中位数的左边和右边的直方图的面积相等,由此可以估计中位数的值,,中位数为,故选B.5、A【解析】由向量共线定理求解【详解】因为向量与共线,所以存在实数,使得,又向量不共线,所以,解得故选:A6、C【解析】根据条件知,f(x)在(0,+∞)上单调递减对于A,f(x)=(x-1)2在(1,+∞)上单调递增,排除A;对于B,f(x)=ex在(0,+∞)上单调递增,排除B;对于C,f(x)=在(0,+∞)上单调递减,C正确;对于D,f(x)=ln(x+1)在(0,+∞)上单调递增,排除D.7、B【解析】利用函数的三要素:定义域、值域、对应关系相同即可求解.【详解】对于①,与,定义域均为,但对应,两函数的对应关系不同,故①不是同一函数;对于②,的定义域为,的定义域为,故②不是同一函数;对于③,与定义域均为,函数表达式可化简为,故③两函数为同一函数;对于④,根据函数的概念,与,定义域、对应关系、值域均相同,故④为同一函数,故选:B【点睛】本题考查了函数的三要素,函数相同只需函数的三要素:定义域、值域、对应关系相同,属于基础题.8、B【解析】由题意,所以.故选B考点:集合的运算9、D【解析】,故选D.10、B【解析】∵,,,,∴函数的零点所在区间是故选B点睛:函数零点问题,常根据零点存在性定理来判断,如果函数在区间上的图象是连续不断的一条曲线,且有,那么,函数在区间内有零点,即存在使得
这个也就是方程的根.由此可判断根所在区间.二、填空题:本大题共6小题,每小题5分,共30分。11、##a≤【解析】时,,原问题.【详解】∵,,∴,∴,即对任意的,都存在,使恒成立,∴有.当时,显然不等式恒成立;当时,,解得;当时,,此时不成立.综上,.故答案为:.12、2【解析】首先由扇形的弧长与圆心角求出扇形的半径,再根据扇形的面积公式计算可得;【详解】解:因为扇形的弧长为2cm,圆心角为1rad,所以扇形的半径cm,所以扇形的面积;故答案为:13、【解析】分类讨论,根据单调性求值域后建立方程可求解.【详解】若,在上单调递减,则,不符合题意;若,在上单调递增,则,当值域为时,可知,解得.故答案为:14、①.1②.42【解析】求出的周期和对称轴,再结合图象即可.【详解】由条件可知函数的图象关于对称轴对称,由可知,,则周期,即,函数在区间中的所有零点之和即为函数与函数图象的交点的横坐标之和,当时,为单调递增函数,,,且区间关于对称,又∵由已知得也是的对称轴,∴只需用研究直线左侧部分即可,由图象可知左侧有7个交点,则右侧也有7个交点,将这14个交点的横坐标从小到大排列,第个数记为,由对称性可知,则,同理,…,,∴.故答案为:,.15、【解析】先求出的值域,再求出的值域,利用和得到不等式组求解即可.【详解】因为,所以,故,即因为,依题意得,解得故答案为:.16、【解析】根据的取值进行分类讨论,得到等价函数后分别求出其零点,然后可得所求集合【详解】①当x>0时,函数f(x)=sgn(x)﹣2x=1﹣2x,令1﹣2x=0,得x=,即当x>0时,函数f(x)的零点是;②当x=0时,函数f(x)=0,故函数f(x)的零点是0;③当x<0时,函数f(x)=﹣1﹣2x,令﹣1﹣2x=0,得x=,即当x<0时,函数f(x)的零点是综上可得函数f(x)=sgn(x)﹣x的零点的集合为:故答案为【点睛】本题主要考查函数零点的求法,解题的关键是根据题意得到函数的解析式,考查转化思想、分类讨论思想,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最小正周期是;(2)【解析】(1)根据图象平移计算方法求出的表达式,然后计算,再用周期公式求解即可;(2)换元令,结合自变量范围求得函数的值域,再根据不等式即可求出参数范围【详解】解:(1)依题意得则所以函数的最小正周期是;(2)令,因为,所以,则,,即由题意知,解得,即实数m的取值范围是【点睛】对于三角函数,求最小正周期和最值时可先把所给三角函数式化为或的形式,则最小正周期为,最大值为,最小值为或结合定义域求取最值18、(1)13;(2)证明见解析.【解析】(1)根据指数和对数的运算法则直接计算可得;(2)根据对数函数的单调性分别求出范围和范围可判断.【详解】(1)原式(2)因为在上递减,在上递增,所以,,故因为,且在递增,所以,即所以,即【点睛】本题考查对数函数单调性的应用,解题的关键是利用对数函数的单调性求出范围,进而可比较大小.19、(1),(2)【解析】(1)先由一元二次不等式的性质求出的值,再根据的图象得出其解析式;(2)将问题转化为,再解对数不等式得出实数的取值范围【小问1详解】∵的解集为,∴方程的两根分别为和2,由韦达定理可得:,解得,∴令,解得或,作出的图象如下图所示:则【小问2详解】由(1)得,当时,有最小值,即,∵,使得,∴只需即可,∴,∴,得,故20、(1)(2)【解析】(1)通过已知得到方程组,解方程组即得二次函数的解析式,再利用二次函数的图象求函数的值域得解;(2)求出,等价于,求出二次函数最小值即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 居民种花活动方案策划(3篇)
- 《GA 1002-2012剧毒化学品、放射源存放场所治安防范要求》专题研究报告深度
- 《GA 664-2006公安奖匾》专题研究报告
- 养老院志愿者服务管理制度
- 养老院入住老人纠纷调解与处理制度
- 养老院个性化服务制度
- 2026湖南岳阳市云溪区人民法院招聘3人备考题库附答案
- 2026福建漳州市鼓浪屿故宫文物馆招聘6人参考题库附答案
- 2026自然资源部所属单位招聘634人参考题库附答案
- 2026贵州医科大学附属白云医院养老护理员招聘8人考试备考题库附答案
- 花溪区高坡苗族乡国土空间总体规划 (2021-2035)
- 非连续性文本阅读(中考试题20篇)-2024年中考语文重难点复习攻略(解析版)
- 专题13 三角函数中的最值模型之胡不归模型(原卷版)
- 门诊药房西药管理制度
- 新能源汽车生产代工合同
- 2025年中煤科工集团重庆研究院有限公司招聘笔试参考题库含答案解析
- 消防救援预防职务犯罪
- 一体化泵站安装施工方案
- 畜禽粪污资源化利用培训
- 《抢救药物知识》课件
- 广州数控GSK 980TDc车床CNC使用手册
评论
0/150
提交评论