版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届上海市复旦附中浦东分校数学高一上期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数,的图象大致是()A. B.C. D.2.已知函数是定义在上的奇函数,在区间上单调递增.若实数满足,则实数的取值范围是A B.C. D.3.若函数在单调递增,则实数a的取值范围为()A. B.C. D.4.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为()A. B.C. D.5.已知函数f(x)=a+log2(x2+a)(a>0)的最小值为8,则实数a的取值属于以下哪个范围()A.(5,6) B.(7,8)C.(8,9) D.(9,10)6.函数的零点所在区间是A. B.C. D.7.已知函数若,则实数的值是()A.1 B.2C.3 D.48.设函数,则下列说法错误的是()A.当时,的值域为B.的单调递减区间为C.当时,函数有个零点D.当时,关于的方程有个实数解9.若定义在上的函数的值域为,则取值范围是()A. B.C. D.10.点A,B,C,D在同一个球的球面上,,,若四面体ABCD体积的最大值为,则这个球的表面积为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数则_______.12.已知集合,,则=______13.函数定义域为____.14.筒车亦称为“水转筒车”,一种以流水为动力,取水灌田的工具,筒车发明于隋而盛于唐,距今已有1000多年的历史.如图,假设在水流量稳定的情况下,一个半径为3米的筒车按逆时针方向做每6分钟转一圈的匀速圆周运动,筒车的轴心O距离水面BC的高度为1.5米,设筒车上的某个盛水筒P的切始位置为点D(水面与筒车右侧的交点),从此处开始计时,t分钟时,该盛水筒距水面距离为,则___________15.设定义在上的函数同时满足以下条件:①;②;③当时,,则=________.16.已知扇形的圆心角为,面积为,则该扇形的弧长为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设全集,集合,.(1)当时,求;(2)在①,②,③这三个条件中任选一个,求实数的取值范围.18.已知函数,.(1)求的最小正周期和最大值;(2)设,求函数的单调区间.19.—条光线从点发出,经轴反射后,经过点,求入射光线和反射光线所在的直线方程.20.已知角α的终边经过点,且为第二象限角(1)求、、的值;(2)若,求的值21.设函数且是奇函数求常数k值;若,试判断函数的单调性,并加以证明;若已知,且函数在区间上的最小值为,求实数m的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】判断函数的奇偶性和对称性,以及函数在上的符号,利用排除法进行判断即可【详解】解:函数,则函数是奇函数,排除D,当时,,则,排除B,C,故选:A【点睛】本题主要考查函数图象的识别和判断,利用函数奇偶性和对称性以及函数值的对应性,结合排除法是解决本题的关键.难度不大2、C【解析】是定义在上的奇函数,在上单调递增,解得故选3、D【解析】根据给定条件利用对数型复合函数单调性列式求解作答.【详解】函数中,令,函数在上单调递增,而函数在上单调递增,则函数在上单调递增,且,因此,,解得,所以实数a的取值范围为.故选:D4、D【解析】答案:D左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案5、A【解析】根复合函数的单调性,得到函数f(x)的单调性,求解函数的最小值f(x)min=8,构造新函数g(a)=a+log2a-8,利用零点的存在定理,即可求解.【详解】由题意,根复合函数的单调性,可得函数f(x)在[0,+∞)上是增函数,在(-∞,0)上递减,所以函数f(x)的最小值f(x)min=f(0)=a+log2a=8,令g(a)=a+log2a-8,a>0,则g(5)=log25-3<0,g(6)=log26-2>0,又g(a)在(0,+∞)上是增函数,所以实数a所在的区间为(5,6)【点睛】本题主要考查了函数的单调性的应用,以及零点的存在定理的应用,其中解答中根据复合函数的单调性,求得函数的最小值,构造新函数,利用零点的存在定理求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.6、B【解析】通过计算,判断出零点所在的区间.【详解】由于,,,故零点在区间,故选B.【点睛】本小题主要考查零点的存在性定理的应用,考查函数的零点问题,属于基础题.7、B【解析】根据分段函数分段处理的原则,求出,代入即可求解.【详解】由题意可知,,,又因为,所以,解得.故选:B.8、C【解析】利用二次函数和指数函数的值域可判断A选项;利用二次函数和指数函数的单调性可判断B选项;利用函数的零点个数求出的取值范围,可判断C选项;解方程可判断D选项.【详解】选项A:当时,当时,,当时,,当时,,综上,函数的值域为,故A正确;选项B:当时,的单调递减区间为,当时,函数为单调递增函数,无单调减区间,所以函数的单调递减为,故B正确;选项C:当时,令,解得或(舍去),当时,要使有解,即在上有解,只需求出的值域即可,当时,,且函数在上单调递减,所以此时的范围为,故C错误;选项D:当时,,即,即,解得或,当,时,,则,即,解得,所以当时,关于的方程有个实数解,故D正确.故选:C.9、C【解析】作函数图象,观察图象确定m的范围.【详解】函数的图象是对称轴为,顶点为的开口向上的抛物线,当时,;当时,.作其图象,如图所示:又函数在上值域为,所以观察图象可得∴取值范围是,故选:C.10、D【解析】根据题意,画出示意图,结合三角形面积及四面积体积的最值,判断顶点D的位置;然后利用勾股定理及球中的线段关系即可求得球的半径,进而求得球的面积【详解】根据题意,画出示意图如下图所示因为,所以三角形ABC为直角三角形,面积为,其所在圆面的小圆圆心在斜边AC的中点处,设该小圆的圆心为Q因为三角形ABC的面积是定值,所以当四面体ABCD体积取得最大值时,高取得最大值即当DQ⊥平面ABC时体积最大所以所以设球心为O,球的半径为R,则即解方程得所以球的表面积为所以选D【点睛】本题考查了空间几何体的外接球面积的求法,主要根据题意,正确画出图形并判断点的位置,属于难题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据分段函数解析式,由内而外,逐步计算,即可得出结果.【详解】∵,,则∴.故答案为:.12、{-1,1,2};【解析】=={-1,1,2}13、∪【解析】根据题意列出满足的条件,解不等式组【详解】由题意得,即,解得或,从而函数的定义域为∪.故答案为:∪.14、【解析】根据图象及所给条件确定振幅、周期、,再根据时求即可得解.【详解】由题意知,,,,当时,,,即,,所以,故答案为:15、【解析】利用周期性和奇偶性,直接将的值转化到上的函数值,再利用解析式计算,即可求出结果【详解】依题意知:函数为奇函数且周期为2,则,,即.【点睛】本题主要考查函数性质——奇偶性和周期性的应用,以及已知解析式,求函数值,同时,考查了转化思想的应用16、【解析】由扇形的圆心角与面积求得半径再利用弧长公式即可求弧长.【详解】设扇形的半径为r,由扇形的面积公式得:,解得,该扇形的弧长为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)①;②;③.【解析】(1)将代入集合,求出集合和,然后利用交集的定义可求出集合;(2)选择①,根据得出关于实数的不等式组,解出即可;选择②,由,可得出,可得出关于实数的不等式组,解出即可;选择③,求出集合,根据可得出关于实数的不等式,解出即可.【详解】(1)当时,,,,因此,;(2),.选择①,,则或,解得或,此时,实数的取值范围是;选择②,,,则,解得,此时,实数的取值范围是;选择③,,或,解得或,此时,实数的取值范围是.综上所述,选择①,实数的取值范围是;选择②,实数的取值范围是;选择③,实数的取值范围是.【点睛】本题考查交集与补集的混合运算,同时也考查了利用集合的包含关系求参数的取值范围,考查运算求解能力,属于中等题.18、(1)最小正周期为,最大值.(2)单调减区间为,单调增区间为【解析】(1)利用三角恒等变换化简函数解析式为,利用正弦型函数的周期公式以及正弦函数的有界性可求得结果;(2)求得,利用余弦型函数的基本性质可求得函数的增区间和减区间.小问1详解】解:.所以,的最小正周期.当时,取得最大值【小问2详解】解:由(1)知,又,由,解得,所以,函数的单调增区间为.由,解得.所以,函数的单调减区间为.19、入射光线所在直线方程为2x-y-4=0,反射光线所在直线方程为2x+y-4=0【解析】如图所示,作A点关于x轴的对称点A′,显然,A′坐标为(3,-2),连接A′B,则A′B所在直线即为反射光线由两点式可得直线A′B的方程为,即2x+y-4=0.同理,点B关于x轴的对称点为B′(-1,-6),由两点式可得直线AB′的方程为,即2x-y-4=0,∴入射光线所在直线方程为2x-y-4=0,反射光线所在直线方程为2x+y-4=0.考点:两点式直线方程,对称问题.20、(1);;(2).【解析】(1)由三角函数的定义和为第二象限角,求得,即点,再利用三角函数的定义,即可求解;(2)利用三角函数的诱导公式和三角函数的基本关系式化简,代入即可求解.【详解】(1)由三角函数的定义可知,解得,因为为第二象限角,∴,即点,则,由三角函数的定义,可得.(2)由(1)知和,可得=.【点睛】本题主要考查了三角函数的定义,以及三角函数的诱导公式的化简、求值问题,其中解答中熟记三角函数的定义,熟练应用三角函数的诱导公式,准确计算是解答的关键你,着重考查了推理与运算能力,属于基础题.21、(1);(2)在上为单调增函数;(3)【解析】(1)根据奇函数的定义,恒成立,可得值,也可用奇函数的必要条件求出值,然后用奇函数定义检验;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 班会周年活动策划方案(3篇)
- 社区食堂休息驿站管理制度(3篇)
- 酒店餐厅取消订单管理制度(3篇)
- 风动锚杆钻机管理制度(3篇)
- 《GA 862-2010机动车驾驶证业务信息采集和驾驶证签注规范》专题研究报告
- 兼职培训教学课件
- 养老院信息化管理与服务制度
- 企业商务合作流程规范制度
- 企业财务预算管理制度
- 2026湖北省定向浙江大学选调生招录参考题库附答案
- 湖南省2025-2026学年七年级历史上学期期末复习试卷(含答案)
- 2026年中国热带农业科学院南亚热带作物研究所第一批招聘23人备考题库完美版
- 2026新疆阿合奇县公益性岗位(乡村振兴专干)招聘44人考试参考试题及答案解析
- 纺织仓库消防安全培训
- 器官移植术后排斥反应的风险分层管理
- 虚拟电厂关键技术
- 事业单位清算及财务报告编写范本
- 护坡绿化劳务合同范本
- 临床绩效的DRG与CMI双指标调控
- 护坡施工安全专项方案
- 2026年湛江日报社公开招聘事业编制工作人员备考题库及完整答案详解
评论
0/150
提交评论