版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宁夏回族自治区银川市兴庆区宁一中2026届高一数学第一学期期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若不等式对任意实数x恒成立,则a的取值范围为()A. B.C. D.2.形如的函数因其图像类似于汉字中的“囧”字,故我们把其生动地称为“囧函数”.若函数有最小值,则“囧函数”与函数的图像交点个数为()A.1 B.2C.4 D.63.在正方体中,异面直线与所成的角为()A.30° B.45°C.60° D.90°4.使幂函数为偶函数,且在上是减函数的值为()A. B.C. D.25.已知,,,则a、b、c的大小顺序为()A. B.C. D.6.幂函数的图象关于轴对称,且在上是增函数,则的值为()A. B.C. D.和7.已知在正四面体ABCD中,E是AD的中点,P是棱AC上的一动点,BP+PE的最小值为,则该四面体内切球的体积为()A.π B.πC.4π D.π8.尽管目前人类还无法精准预报地震,但科学家通过研究,已经对地震有所了解,例如,地震释放出的能量E(单位:焦耳)与地震里氏震级之间的关系式为.年月日,日本东北部海域发生里氏级地震,它所释放出来的能量是年月日我国四川九寨沟县发生里氏级地震的()A.倍 B.倍C.倍 D.倍9.已知直线、、与平面、,下列命题正确的是()A若,则 B.若,则C.若,则 D.若,则10.若偶函数在区间上是减函数,是锐角三角形的两个内角,且,则下列不等式中正确的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数y=的单调递增区间是____.12.已知函数,分别是定义在R上的偶函数和奇函数,且满足,则函数的解析式为____________________;若函数有唯一零点,则实数的值为____________________13.的值为______14.已知点为角终边上一点,则______.15.已知函数,设,,若成立,则实数的最大值是_______16.已知,若,则的最小值是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,已知直角梯形ABCD,BC∥AD,∠ABC=90°,AB=5cm,BC=16cm,AD=4cm.求以AB所在直线为轴旋转一周所得几何体的表面积18.已知函数的图象两相邻对称轴之间的距离是,若将的图象先向右平移个单位长度,再向上平移2个单位长度后,所得图象关于轴对称且经过坐标原点.(1)求的解析式;(2)若对任意,恒成立,求实数的取值范围.19.已知函数.(1)求方程在上的解;(2)求证:对任意的,方程都有解20.如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M,N分别是A1B,B1C1的中点.(1)求证:MN⊥平面A1BC;(2)求直线BC1和平面A1BC所成的角的大小.21.某乡镇为打造成“生态农业特色乡镇”,决定种植某种水果,该水果单株产量(单位:千克)与施用肥料(单位:千克)满足如下关系:,单株成本投入(含施肥、人工等)为元.已知这种水果的市场售价为15元/千克,且销路畅通供不应求,记该水果树的单株利润为(单位:元).(1)求的函数关系式;(2)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】先分析出的奇偶性,再得出的单调性,由单调性结合奇偶性解不等式得到,再利用均值不等式可得答案.【详解】的定义域满足,由,所以在上恒成立.所以的定义域为则所以,即为奇函数.设,由上可知为奇函数.当时,,均为增函数,则在上为增函数.所以在上为增函数.又为奇函数,则在上为增函数,且所以在上为增函数.所以在上为增函数.由,即所以对任意实数x恒成立即,由当且仅当,即时得到等号.所以故选:C2、C【解析】令,根据函数有最小值,可得,由此可画出“囧函数”与函数在同一坐标系内的图象,由图象分析可得结果.【详解】令,则函数有最小值∵,∴当函数是增函数时,在上有最小值,∴当函数是减函数时,在上无最小值,∴.此时“囧函数”与函数在同一坐标系内的图象如图所示,由图象可知,它们的图象的交点个数为4.【点睛】本题考查对数函数的性质和函数图象的应用,考查学生画图能力和数形结合的思想运用,属中档题.3、C【解析】首先由可得是异面直线和所成角,再由为正三角形即可求解.【详解】连接因为为正方体,所以,则是异面直线和所成角.又,可得为等边三角形,则,所以异面直线与所成角为,故选:C【点睛】本题考查异面直线所成的角,利用平行构造三角形或平行四边形是关键,考查了空间想象能力和推理能力,属于中档题.4、B【解析】根据幂函数的性质确定正确选项.【详解】A选项,是奇函数,不符合题意.B选项,为偶函数,且在上是减函数,符合题意.C选项,是非奇非偶函数,不符合题意.D选项,,在上递增,不符合题意.故选:B5、D【解析】由对数的运算性质可判断出,而由已知可得,从而可判断出,进而可比较大小详解】由,故,因为,所以,因为,所以,所以,即故选:D6、D【解析】分别代入的值,由幂函数性质判断函数增减性即可.【详解】因为,,所以当时,,由幂函数性质得,在上是减函数;所以当时,,由幂函数性质得,在上是常函数;所以当时,,由幂函数性质得,图象关于y轴对称,在上是增函数;所以当时,,由幂函数性质得,图象关于y轴对称,在上是增函数;故选:D7、D【解析】首先设正四面体的棱长为,将侧面和沿边展开成平面图形,根据题意得到的最小值为,从而得到,根据等体积转化得到内切球半径,再计算其体积即可.【详解】设正四面体的棱长为,将侧面和沿边展开成平面图形,如图所示:则的最小值为,解得.如图所示:为正四面体的高,,正四面体高.所以正四面体的体积.设正四面体内切球的球心为,半径为,如图所示:则到正四面体四个面的距离相等,都等于,所以正四面体的体积,解得.所以内切球的体积.故选:D8、C【解析】设里氏级和级地震释放出的能量分别为和,可得出,利用对数的运算性质可求得的值,即可得解.【详解】设里氏级和级地震释放出的能量分别为和,由已知可得,则,故故选:C.9、D【解析】利用线线,线面,面面的位置关系,以及垂直,平行的判断和性质判断选项.【详解】A.若,则或异面,故A不正确;B.缺少垂直于交线这个条件,不能推出,故B不正确;C.由垂直关系可知,或相交,或是异面,故C不正确;D.因,所以平面内存在直线,若,则,且,所以,故D正确.故选:D10、C【解析】根据,可得,根据的单调性,即可求得结果.【详解】因为是锐角三角形的两个内角,故可得,即,又因为,故可得;是偶函数,且在单调递减,故可得在单调递增,故.故选:C.【点睛】本题考查由函数奇偶性判断函数的单调性,涉及余弦函数的单调性,属综合中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设函数,再利用复合函数的单调性原理求解.【详解】解:由题得函数的定义域为.设函数,因为函数的单调递减区间为,单调递增区间为,函数是单调递减函数,由复合函数的单调性得函数y=的单调递增区间为.故答案为:12、(1).(2).或【解析】把方程中的换成,然后利用奇偶性可得另一方程,联立可解得;令,可得为偶函数,从而可得关于对称,由函数有唯一零点,可得,从而可求得的值【详解】解:因为函数,分别是定义在上的偶函数和奇函数,所以,因为,①所以,即,②①②联立,可解得令,则,所以为偶函数,所以关于对称,因为有唯一的零点,所以的零点只能为,即,解得或故答案为:;或【点睛】关键点点睛:此题考查函数奇偶性的应用,考查函数的零点,解题的关键是令,可得为偶函数,从而可得关于对称,由函数有唯一零点,可得,从而可求得的值,考查数学转化思想和计算能力,属于中档题13、【解析】直接利用对数的运算法则和指数幂的运算法则求解即可【详解】14、5【解析】首先求,再化简,求值.【详解】由题意可知.故答案为:5【点睛】本题考查三角函数的定义和关于的齐次分式求值,意在考查基本化简和计算.15、【解析】设不等式的解集为,从而得出韦达定理,由可得,要使,即不等式的解集为,则可得,以及是方程的两个根,再得出其韦达定理,比较韦达定理可得出,从而求出与的关系,代入,得出答案.【详解】,则由题意设集合,即不等式的解集为所以是方程的两个不等实数根则,则由可得,由,所以不等式的解集为所以是方程,即的两个不等实数根,所以故,,则,则,则由,即,即,解得综上可得,所以的最大值为故答案:16、16【解析】乘1后借助已知展开,然后由基本不等式可得.【详解】因为,所以当且仅当,,即时,取“=”号,所以的最小值为16.故答案为:16三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】根据题意知由直角梯形绕其直腰所得的几何体是圆台,根据题意求出圆台的两底面的半径和母线长,再代入表面积公式求解【详解】以所在直线为轴旋转一周所得几何体圆台,其上底半径是,下底半径是16cm母线DC=13(cm)该几何体的表面积为【点睛】本题的考点是旋转体的表面积的求法,关键是由平面图形想象出所得旋转体的结构特征,再求出所得旋转体的高以及其它几何元素的长度,考查了空间想象能力18、(1);(2)【解析】(1)根据周期计算,,时满足条件,即,过原点得到,得到答案.(2)设,,根据函数最值得到,计算得到答案.【详解】(1),,故.向右平移个单位长度,再向上平移2个单位长度得到y=.即,故,即,时满足条件,即,,故.故(2),故,故,.设,即恒成立.即的最大值小于等于零即可.故满足:,即,解得【点睛】本题考查了三角函数解析式,函数恒成立问题,将恒成立问题转化为最值问题是解题的关键.19、(1)或;(2)证明见解析【解析】(1)根据诱导公式和正弦、余弦函数的性质可得答案;(2)令,分,,三种情况,分别根据零点存在定理可得证.【详解】解:(1)由,得,所以当时,上述方程的解为或,即方程在上的解为或;(2)证明:令,则,①当时,,令,则,即此时方程有解;②当时,,又∵在区间上是不间断的一条曲线,由零点存在性定理可知,在区间上有零点,即此时方程有解;③当时,,,又∵在区间上是不间断的一条曲线,由零点存在性定理可知,在区间上有零点,即此时方程有解.综上,对任意的,方程都有解20、(1)见解析;(2)【解析】(1)易得BC⊥平面ACC1A1,连接AC1,则BC⊥AC1.侧面ACC1A1是正方形,所以A1C⊥AC1.又BC∩A1C=C,根据线面垂直判定定理可知AC1⊥平面A1BC,因为侧面ABB1A1是正方形,MN是△AB1C1的中位线,所以MN∥AC1,从而MN⊥平面A1BC;(2)根据AC1⊥平面A1BC,设AC1与A1C相交于点D,连接BD,根据线面所成角的定义可知∠C1BD为直线BC1和平面A1BC所成角,设AC=BC=CC1=a,求出C1D,BC1,在Rt△BDC1中,求出∠C1BD,即可求出所求.试题解析:(1)证明如图,由已知BC⊥AC,BC⊥CC1,得BC⊥平面ACC1A1.连接AC1,则BC⊥AC1.又侧面ACC1A1是正方形,所以A1C⊥AC1.又BC∩A1C=C,所以AC1⊥平面A1BC.因为侧面ABB1A1是正方形,M是A1B的中点,连接AB1,则点M是AB1的中点.又点N是B1C1的中点,则MN是△AB1C1的中位线,所以MN∥AC1.故MN⊥平面A1BC.(2)如图所示,因为AC1⊥平面A1BC,设AC1与A1C相交于点D,连接BD,则∠C1BD为直线BC1和平面A1BC所成的角.设AC=BC=CC1=a,则C1D=a,BC1=a在Rt△BDC1中,sin∠C1BD==,所以∠C1BD=30°,故直线BC1和平面A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026贵州省黔晟国有资产经营有限责任公司面向社会招聘中层管理人员2人考试备考试题及答案解析
- 2026贵州省省、市两级机关遴选公务员357人备考考试题库及答案解析
- 市场调查公司财务管理制度
- 2026江苏南京市气象部门招聘高层次人才2人备考考试试题及答案解析
- 医疗用品销售管理制度范本(3篇)
- 煤矿运输车辆管理制度(3篇)
- 酒店活动策划备选方案(3篇)
- 古风日常活动策划方案(3篇)
- 蛋白质是生命活动的主要承担者课件2025-2026学年高一上学期生物人教版必修1
- 2026财达证券博士后招聘4人(河北)备考考试题库及答案解析
- 山东省济南市2023-2024学年高二上学期期末考试化学试题 附答案
- DB52T 1517-2020 含笑属栽培技术规程 黄心夜合
- GB/T 18724-2024印刷技术印刷品与印刷油墨耐各种试剂性的测定
- HG+20231-2014化学工业建设项目试车规范
- 婴幼儿托育服务与管理专业-《婴幼儿感觉统合训练》课程标准
- 老年口腔健康讲座课件
- 卒中后认知障碍管理专家共识
- 南京科技职业学院单招职测参考试题库(含答案)
- 客户验厂报告
- 开磷集团(电池级磷酸一铵)项目环评报告
- 案例(母线PT反充电)
评论
0/150
提交评论