版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届广东省执信中学高一上数学期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知为常数,函数在内有且只有一个零点,则常数的值形成的集合是A. B.C. D.2.下列四组函数中,表示相同函数的一组是()A.,B.,C.,D.,3.已知,则的最小值为()A.2 B.3C.4 D.54.已知,则函数与函数的图象可能是()A. B.C. D.5.已知且,函数,满足对任意实数,都有成立,则实数的取值范围是()A. B.C. D.6.已知,,是三个不同的平面,是一条直线,则下列说法正确的是()A.若,,,则B.若,,则C.若,,则D.若,,,则7.函数的定义域为D,若满足;(1)在D内是单调函数;(2)存在,使得在上的值域也是,则称为闭函数;若是闭函数,则实数的取值范围是()A. B.C. D.8.已知函数,在下列区间中,包含零点的区间是A. B.C. D.9.已知α,β是两个不同的平面,给出下列四个条件:①存在一条直线a,使得a⊥α,a⊥β;②存在两条平行直线a,b,使得a//α,a//β,b//α,b//β;③存在两条异面直线a,b,使得a⊂α,b⊂β,a//β,b//α;④存在一个平面γ,使得γ⊥α,γ⊥β其中可以推出α//β的条件个数是A.1 B.2C.3 D.410.若,则a,b,c的大小关系是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,且,则__________.12.的值为_______13.已知tanα=3,则sin14.在正方形ABCD中,E是线段CD的中点,若,则________.15.方程在上的解是______.16.已知,用m,n表示为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划,2020年某企业计划引进新能源汽车生产设备看,通过市场分析,全年需投入固定成本3000万元,每生产x(百辆)需另投入成本y(万元),且由市场调研知,每辆车售价6万元,且全年内生产的车辆当年能全部销售完(1)求出2020年的利润S(万元)关于年产量x(百辆)的函数关系式;(利润=销售额减去成本)(2)当2020年产量为多少百辆时,企业所获利润最大?并求出最大利润18.在①函数;②函数;③函数的图象向右平移个单位长度得到的图象,的图象关于原点对称;这三个条件中任选一个作为已知条件,补充在下面的问题中,然后解答补充完整的题已知______(只需填序号),函数的图象相邻两条对称轴之间的距离为.(1)求函数的解析式;(2)求函数的单调递减区间及其在上的最值注:若选择多个条件分别解答,则按第一个解答计分.19.如图,在几何体中,,均与底面垂直,且为直角梯形,,,,,分别为线段,的中点,为线段上任意一点.(1)证明:平面.(2)若,证明:平面平面.20.将函数(且)的图象向左平移1个单位,再向上平移2个单位,得到函数的图象,(1)求函数的解析式;(2)设函数,若对一切恒成立,求实数的取值范围;(3)若函数在区间上有且仅有一个零点,求实数的取值范围.21.已知,且的最小正周期为.(1)求;(2)当时,求函数的最大值和最小值并求相应的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】分析:函数在内有且只有一个零点,等价于,有一个根,函数与只有一个交点,此时,,详解:,,,,,,,,,,,,,,,令,,,,,,,,,∵零点只有一个,∴函数与只有一个交点,此时,,.故选C.点睛:函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数有零点函数在轴有交点方程有根函数与有交点.2、C【解析】根据相同函数的判断原则进行定义域的判断即可选出答案.【详解】解:由题意得:对于选项A:的定义域为,的定义域为,所以这两个函数的定义域不同,不表示相同的函数,故A错误;对于选项B:的定义域为,的定义域为,所以这两个函数的定义域不同,不表示相同的函数,故B错误;对于选项C:的定义域为,的定义域为,这两函数的定义域相同,且对应关系也相同,所以表示相同的函数,故C正确;对于选项D:的定义域为,的定义域为或,所以这两个函数的定义域不同,不表示相同的函数,故D错误.故选:C3、A【解析】由可得,将整理为,再利用基本不等式即可求解.【详解】因为,所以,所以,当且仅当,即时取等号,所以的最小值为.故选:A4、D【解析】根据对数关系得,所以函数与函数的单调性相同即可得到选项.【详解】,所以,,不为1的情况下:,函数与函数的单调性相同,ABC均不满足,D满足题意.故选:D【点睛】此题考查函数图象的辨析,根据已知条件找出等量关系或不等关系,分析出函数的单调性得解.5、D【解析】根据单调性的定义可知函数在R上为增函数,即可得到,解出不等式组即可得到实数的取值范围【详解】∵对任意实数,都有成立,∴函数在R上为增函数,∴,解得,∴实数的取值范围是故选:D6、A【解析】利用面面垂直的性质,线面的位置关系,面面的位置关系,结合几何模型即可判断.【详解】对于A,在平面内取一点P,在平面内过P分别作平面与,与的交线的垂线a,b,则由面面垂直的性质定理可得,又,∴,由线面垂直的判定定理可得,故A正确;对于B,若,,则与位置关系不确定,可能与平行、相交或在内,故B错误;对于C,若,,则与相交或平行,故C错误;对于D,如图平面,且,,,显然与不垂直,故D错误.故选:A.7、C【解析】先判定函数的单调性,然后根据条件建立方程组,转化为使方程有两个相异的非负实根,最后建立关于的不等式,解之即可.【详解】因为函数是单调递增函数,所以即有两个相异非负实根,所以有两个相异非负实根,令,所以有两个相异非负实根,令则,解得.故选.【点睛】本题考查了函数与方程,二次方程实根的分布,转化法,属于中档题.8、C【解析】因为,,所以由根的存在性定理可知:选C.考点:本小题主要考查函数的零点知识,正确理解零点定义及根的存在性定理是解答好本类题目的关键.9、B【解析】当α,β不平行时,不存在直线a与α,β都垂直,∴a⊥α,a⊥β⇒α∥β,故1正确;存在两条平行直线a,b,a∥α,b∥β,a∥β,b∥α,则α,β相交或平行,所以2不正确;存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α,由面面平行的判定定理得α∥β,故3正确;存在一个平面γ,使得γ⊥α,γ⊥β,则α,β相交或平行,所以4不正确;故选B10、A【解析】根据题意,以及指数和对数的函数的单调性,来确定a,b,c的大小关系.【详解】解:是增函数,是增函数.,又,【点睛】本题考查三个数的大小的求法,考查指数函数和对数函数性质等基础知识,考查运算求解能力,是基础题.根据题意,构造合适的对数函数和指数函数,利用指数对数函数的单调性判定的范围是关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据共线向量的坐标表示,列出方程,即可求解.【详解】由题意,向量,,因为,可得,解得.故答案为:.12、【解析】直接按照诱导公式转化计算即可【详解】tan300°=tan(300°﹣360°)=tan(﹣60°)=﹣tan60°=故答案为:【点睛】本题考查诱导公式的应用:求值.一般采用“大角化小角,负角化正角”的思路进行转化13、3【解析】由题意利用同角三角函数的基本关系,求得要求式子的值【详解】∵tanα=3,∴sinα•cosα=sin故答案为310【点睛】本题主要考查同角三角函数的基本关系,属于基础题14、【解析】详解】由图可知,,所以))所以,故,即,即得15、##【解析】根据三角函数值直接求角.【详解】由,得或,即或,又,故,故答案为.16、【解析】结合换底公式以及对数的运算法则即可求出结果.详解】,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)100百辆时,1300万元【解析】(1)分和,由利润=销售额减去成本求解;(2)由(1)的结果,利用二次函数和对勾函数的性质求解.【小问1详解】解:由题意得当,,当时,,所以;【小问2详解】当时,,当时,,当时,由对勾函数,当时,,时,,时,即2020年产量为100百辆时,企业所获利润最大,且最大利润为1300万元18、(1)条件选择见解析,(2)单调递减区间为,最小值为,最大值为2【解析】(1)选条件①:利用同角三角函数的关系式以及两角和的正弦公式和倍角公式,将化为只含一个三角函数形式,根据最小正周期求得,即可得答案;选条件②:利用两角和的正弦公式以及倍角公式,将化为只含一个三角函数形式,根据最小正周期求得,即可得答案;选条件③,先求得,利用三角函数图象的平移变换规律,可得到g(x)的表达式,根据其性质求得,即得答案;(2)根据正弦函数的单调性即可求得答案,再由,确定,根据三角函数性质即可求得答案.【小问1详解】选条件①:法一:又由函数的图象相邻两条对称轴之间的距离为,可知函数最小正周期,∴,∴选条件②:,又最小正周期,∴,∴选条件③:由题意可知,最小正周期,∴,∴,∴,又函数的图象关于原点对称,∴,∵,∴∴【小问2详解】由(1)知,由,解得,∴函数单调递减区间为由,从而,故在区间上的最小值为,最大值为2.19、(1)详见解析;(2)详见解析.【解析】(1)由题可得,进而可得平面,因为,,所以四边形为平行四边形,即,从而得出平面,平面平面,进而证得平面(2)由题可先证明四边形为正方形,连接,则,再证得平面,进而证得平面平面.【详解】证明:(1)因平面,平面,所以.因为平面,平面,所以平面.因为,,所以四边形为平行四边形,所以.因为平面,平面,所以平面.因为,所以平面平面,因为平面,所以平面.(2)因为,所以为等腰直角三角形,则.因为为的中点,且四边形为平行四边形,所以,故四边形为正方形.连接,则.因为平面,平面,所以.因为,平面,平面,所以平面.因为分别,的中点,所以,则平面.因为平面,所以平面平面.【点睛】本题主要考查证明线面平行问题以及面面垂直问题,属于一般题20、(1)(2)(3)【解析】(1)由图象的平移特点可得所求函数的解析式;(2)求得的解析式,可得对一切恒成立,再由二次函数的性质可得所求范围;(3)将化简为,由题意可得只需在区间,,上有唯一解,利用图象,数形结合求得答案.【小问1详解】将函数且的图象向左平移1个单位,得到的图象,再向上平移2个单位,得到函数的图象,即:;【小问2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南省株洲市2026届高三上学期教学质量统一检测(一模)历史试卷(含答案)
- 河南省驻马店市泌阳县2025-2026学年八年级上学期1月期末考试物理试卷(含答案)
- 五年级下册期末测试卷及答案
- 文秘笔试题目及答案
- 北京化工大学《中国近现代史纲要实务》2024-2025学年期末试卷(A卷)
- 湖北省随州市曾都区第一高级中学2025-2026学年高一上学期1月期末复习综合测试历史试题(原卷版+解析版)
- 2025 小学三年级科学下册植物与阳光关系实验课件
- 数控铣床考试题目及答案
- 生产决定消费试题及答案
- 软考中级科目试题及答案
- 老年人安宁疗护护理计划制定与实施指南
- 线性代数课件 第6章 二次型 第2节
- 餐饮餐具消毒安全培训课件
- 心理科治疗咨询方案模板
- (2021-2025)5年高考1年模拟物理真题分类汇编专题04 机械能守恒、动量守恒及功能关系(广东专用)(解析版)
- 2025年车间核算员考试题及答案
- 2026年高考作文备考之提高议论文的思辨性三大技法
- 南宁市人教版七年级上册期末生物期末考试试卷及答案
- 项目安全生产管理办法
- 乳糜胸护理新进展
- 社区护理中的青少年保健
评论
0/150
提交评论