江西省顶级名校2026届数学高一上期末调研试题含解析_第1页
江西省顶级名校2026届数学高一上期末调研试题含解析_第2页
江西省顶级名校2026届数学高一上期末调研试题含解析_第3页
江西省顶级名校2026届数学高一上期末调研试题含解析_第4页
江西省顶级名校2026届数学高一上期末调研试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省顶级名校2026届数学高一上期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.给出下列命题:①函数为偶函数;②函数在上单调递增;③函数在区间上单调递减;④函数与的图像关于直线对称.其中正确命题的个数是()A.1 B.2C.3 D.42.设,,则()A. B.C. D.3.已知集合,,则A∩B中元素的个数为()A.2 B.3C.4 D.54.下列四个函数,以为最小正周期,且在区间上单调递减的是()A. B.C. D.5.已知是空间两条不重合的直线,是两个不重合的平面,则下列命题中正确的是A.,,B,,C.,,D.,,6.设集合,.若,则()A. B.C. D.7.下列函数中,最小正周期是且是奇函数的是()A. B.C. D.8.已知函数对任意实数都满足,若,则A.-1 B.0C.1 D.29.若,且,则角的终边位于A.第一象限 B.第二象限C.第三象限 D.第四象限10.设m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是A.若,,则B.若,,,则C.若,,则D.若,,,则二、填空题:本大题共6小题,每小题5分,共30分。11.若函数的图象关于直线对称,则的最小值是________.12.已知圆心为(1,1),经过点(4,5),则圆的标准方程为_____________________.13.函数的单调减区间是_________.14.幂函数y=f(x)的图象过点(2,8),则15.写出一个同时具有下列三个性质函数:________.①;②在上单调递增;③.16.如图所示,中,,边AC上的高,则其水平放置的直观图的面积为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,顶点,,BC边所在直线方程为.(1)求过点A且平行于BC的直线方程;(2)求线段AB的垂直平分线方程.18.已知函数(a>0且a≠1).(1)若f(x)在[-1,1]上的最大值与最小值之差为,求实数a的值;(2)若,当a>1时,解不等式.19.如图,四边形中,,,,,、分别在、上,,现将四边形沿折起,使平面平面()若,是否存在折叠后的线段上存在一点,且,使得平面?若存在,求出的值;若不存在,说明理由()求三棱锥的体积的最大值,并求此时点到平面的距离20.近年来,随着我市经济的快速发展,政府对民生越来越关注市区现有一块近似正三角形的土地(如图所示),其边长为2百米,为了满足市民的休闲需求,市政府拟在三个顶点处分别修建扇形广场,即扇形和,其中与、分别相切于点,且与无重叠,剩余部分(阴影部分)种植草坪.设长为(单位:百米),草坪面积为(单位:万平方米).(1)试用分别表示扇形和的面积,并写出的取值范围;(2)当为何值时,草坪面积最大?并求出最大面积.21.已知函数,其中(1)判断函数的奇偶性并证明;(2)求函数的值域

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】①函数为偶函数,因为是正确的;②函数在上单调递增,单调增是正确的;③函数是偶函数,在区间上单调递增,故选项不正确;④函数与互为反函数,根据反函数的概念得到图像关于对称.是正确的.故答案为C.2、A【解析】由对数函数的图象和性质知,,则.又因为,根据已知可算出其取值范围,进而得到答案.【详解】解:因为,,所以,又+,所以,所以.故选:A.3、B【解析】采用列举法列举出中元素的即可.【详解】由题意,,故中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.4、A【解析】先判断各函数最小正周期,再确定各函数在区间上单调性,即可选择判断.【详解】最小正周期为,在区间上单调递减;最小正周期为,在区间上单调递减;最小正周期为,在区间上单调递增;最小正周期为,在区间上单调递增;故选:A5、D【解析】A不正确,也有可能;B不正确,也有可能;C不正确,可能或或;D正确,,,,考点:1线面位置关系;2线面垂直6、C【解析】∵集合,,∴是方程的解,即∴∴,故选C7、A【解析】根据三角函数的周期性和奇偶性对选项逐一分析,由此确定正确选项.【详解】A选项,的最小正周期是,且是奇函数,A正确.B选项,的最小正周期是,且是奇函数,B错误.C选项,的最小正周期为,且是奇函数,C错误.D选项,的最小正周期是,且是偶函数,D错误.故选:A8、A【解析】由题意首先确定函数的周期性,然后结合所给的关系式确定的值即可.【详解】由可得,据此可得:,即函数是周期为2的函数,且,据此可知.本题选择A选项.【点睛】本题主要考查函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.9、B【解析】∵sinα>0,则角α的终边位于一二象限或y轴的非负半轴,∵由tanα<0,∴角α的终边位于二四象限,∴角α的终边位于第二象限故选择B10、C【解析】根据空间中直线与平面,平面与平面的位置关系即得。【详解】A.因为垂直于同一平面的两个平面可能平行或相交,不能确定两平面之间是平行关系,故不正确;B.若,,,则或相交,故不正确;C.由垂直同一条直线的两个平面的关系判断,正确;D.若,,,则或相交,故不正确.故选:C【点睛】本题考查空间直线和平面,平面和平面的位置关系,考查学生的空间想象能力。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据正弦函数图象的对称性求解.【详解】依题意可知,得,所以,故当时,取得最小值.故答案为:.【点睛】本题考查三角函数的对称性.正弦函数的对称轴方程是,对称中心是12、【解析】设出圆的标准方程,代入点的坐标,求出半径,求出圆的标准方程【详解】设圆的标准方程为(x-1)2+(y-1)2=R2,由圆经过点(4,5)得R2=25,从而所求方程为(x-1)2+(y-1)2=25,故答案为(x-1)2+(y-1)2=25【点睛】本题主要考查圆的标准方程,利用了待定系数法,关键是确定圆的半径13、##【解析】根据复合函数的单调性“同增异减”,即可求解.【详解】令,根据复合函数单调性可知,内层函数在上单调递减,在上单调递增,外层函数在定义域上单调递增,所以函数#在上单调递减,在上单调递增.故答案为:.14、64【解析】由幂函数y=f(x)=xα的图象过点(2,8)【详解】∵幂函数y=f(x)=xα的图象过点∴2α=8∴f(x)=x∴f(4)=故答案为64【点睛】本题考查幂函数概念,考查运算求解能力,是基础题15、或其他【解析】找出一个同时具有三个性质的函数即可.【详解】例如,是单调递增函数,,满足三个条件.故答案为:.(答案不唯一)16、.【解析】直接根据直观图与原图像面积的关系求解即可.【详解】的面积为,由平面图形的面积与直观图的面积间的关系.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用点斜式求得过点A且平行于BC的直线方程.(2)根据中点坐标、线段AB的垂直平分线的斜率求得正确答案.【小问1详解】直线的斜率为,所以过点A且平行于BC的直线方程为.【小问2详解】线段的中点为,直线的斜率为,所以线段AB的垂直平分线的斜率为,所以线段AB的垂直平分线为.18、(1)2或;(2)或.【解析】(1)对a值分类讨论,根据单调性列出最值之差表达式即可求解;(2)由函数的奇偶性、单调性脱去给定不等式中的法则“”,转化为一元二次不等式,求解即得.【详解】(1)①当,f(x)在[-1,1]上单调递增,,解得,②当时,f(x)在[-1,1]上单调递减,,解得,综上可得,实数a的值为2或.(2)由题可得定义域为,且,所以为上的奇函数;又因为,且,所以在上单调递增;所以,或,所以不等式的解集为或.【点睛】解抽象的函数不等式,分析对应函数的奇偶性和单调性是解决问题的关键.19、(1)答案见解析;(2)答案见解析.【解析】(1)存在,使得平面,此时,即,利用几何关系可知四边形为平行四边形,则,利用线面平行的判断定理可知平面成立(2)由题意可得三棱锥的体积,由均值不等式的结论可知时,三棱锥的体积有最大值,最大值为建立空间直角坐标系,则,平面的法向量为,故点到平面的距离试题解析:()存在,使得平面,此时证明:当,此时,过作,与交,则,又,故,∵,,∴,且,故四边形为平行四边形,∴,∵平面,平面,∴平面成立()∵平面平面,平面,,∴平面,∵,∴,,,故三棱锥的体积,∴时,三棱锥的体积有最大值,最大值为建立如图所示的空间直角坐标系,则,,,,,设平面的法向量为,则,∴,取,则,,∴∴点到平面的距离20、(1),,;(2)时,草坪面积最大,最大面积为万平方米.【解析】(1)因为,所以可得三个扇形的半径,圆心角都为,由扇形的面积公式可得答案;(2)用三角形面积减去三个扇形面积可得草坪面积,再利用二次函数可求出最值.【详解】(1),则,,在扇形中,的长为,所以,同理,.∵与无重叠,∴,即,则.又三个扇形都在三角形内部,则,∴.(2)∵,∴,∴当时,取得最大值,为.故当长为百米时,草坪

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论