内蒙古包头市北方重工集团三中2026届数学高一上期末监测模拟试题含解析_第1页
内蒙古包头市北方重工集团三中2026届数学高一上期末监测模拟试题含解析_第2页
内蒙古包头市北方重工集团三中2026届数学高一上期末监测模拟试题含解析_第3页
内蒙古包头市北方重工集团三中2026届数学高一上期末监测模拟试题含解析_第4页
内蒙古包头市北方重工集团三中2026届数学高一上期末监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古包头市北方重工集团三中2026届数学高一上期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知一个样本容量为7的样本的平均数为5,方差为2,现样本加入新数据4,5,6,此时样本容量为10,若此时平均数为,方差为,则()A., B.,C., D.,2.在边长为3的菱形中,,,则=()A. B.-1C. D.3.与终边相同的角的集合是A. B.C. D.4.函数的部分图像为()A. B.C. D.5.已知,设函数,的最大值为A,最小值为B,那么A+B的值为()A.4042 B.2021C.2020 D.20246.函数在上最大值与最小值之和是()A. B.C. D.7.已知x是实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V的满足.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为()()A.1.5 B.1.2C.0.8 D.0.69.若,,则的值为A. B.C. D.10.已知函数在上单调递减,且关于的方程恰好有两个不相等的实数解,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域是______________12.已知函数的部分图像如图所示,则_______________.13.某地为践行绿水青山就是金山银山的理念,大力开展植树造林.假设一片森林原来的面积为亩,计划每年种植一些树苗,且森林面积的年增长率相同,当面积是原来的倍时,所用时间是年(1)求森林面积的年增长率;(2)到今年为止,森林面积为原来的倍,则该地已经植树造林多少年?(3)为使森林面积至少达到亩,至少需要植树造林多少年(精确到整数)?(参考数据:,)14.化简:=____________15.已知函数对于任意实数x满足.若,则_______________16.一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为4的直角三角形,俯视图是半径为2的四分之一圆周和两条半径,则这个几何体的体积为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象经过点(1)求的解析式;(2)若不等式对恒成立,求m的取值范围18.已知函数(其中,)的图象与轴的任意两个相邻交点间的距离为,且直线是函数图象的一条对称轴.(1)求的值;(2)求的单调递减区间;(3)若,求的值域.19.已知函数满足(1)求的解析式,并求在上的值域;(2)若对,且,都有成立,求实数k的取值范围20.求解下列问题(1)化简(其中各字母均为正数):;(2)化简并求值:21.已知函数同时满足下列四个条件中的三个:①当时,函数值为0;②的最大值为;③的图象可由的图象平移得到;④函数的最小正周期为.(1)请选出这三个条件并求出函数的解析式;(2)对于给定函数,求该函数的最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】设这10个数据分别为:,进而根据题意求出和,进而再根据平均数和方差的定义求得答案.【详解】设这10个数据分别为:,根据题意,,所以,.故选:B.2、C【解析】运用向量的减法运算,表示向量,再运用向量的数量积运算,可得选项.【详解】.故选:C.【点睛】本题考查向量的加法、减法运算,向量的线性表示,向量的数量积运算,属于基础题.3、D【解析】根据终边相同的角定义的写法,直接写出与角α终边相同的角,得到结果【详解】根据角的终边相同的定义的写法,若α=,则与角α终边相同的角可以表示为k•360°(k∈Z),即(k∈Z)故选D【点睛】本题考查与角α的终边相同的角的集合的表示方法,属于基础题.4、D【解析】先判断奇偶性排除C,再利用排除B,求导判断单调性可排除A.【详解】因为,所以为偶函数,排除C;因为,排除B;当时,,,当时,,所以函数在区间上单调递减,排除A.故选:D5、D【解析】由已知得,令,则,由的单调性可求出最大值和最小值的和为,即可求解.【详解】函数令,∴,又∵在,时单调递减函数;∴最大值和最小值的和为,函数的最大值为,最小值为;则;故选:6、A【解析】直接利用的范围求得函数的最值,即可求解.【详解】∵,∴,∴,∴最大值与最小值之和为,故选:.7、A【解析】解一元二次不等式得或,再根据集合间的基本关系,即可得答案;【详解】或,或,反之不成立,“”是“”的充分不必要条件,故选:A.8、C【解析】根据关系,当时,求出,再用指数表示,即可求解.【详解】由,当时,,则.故选:C.9、A【解析】由两角差的正切公式展开计算可得【详解】解:,,则,故选A【点睛】本题考查两角差的正切公式:,对应还应该掌握两角和的正切公式,及正弦余弦公式.本题是基础10、C【解析】由在,上单调递减,得,由在上单调递减,得,作出函数且在上的大致图象,利用数形结合思想能求出的取值范围【详解】解:由在上单调递减,得,又由且在上单调递减,得,解得,所以,作出函数且在上的大致图象,由图象可知,在上,有且仅有一个解,故在上,同样有且仅有一个解,当,即时,联立,即,则,解得:,当时,即,由图象可知,符合条件综上:故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意可得,从而可得答案.【详解】函数的定义域满足即,所以函数的定义域为故答案为:12、【解析】首先确定函数的解析式,然后求解的值即可.【详解】由题意可得:,当时,,令可得:,据此有:.故答案为:.【点睛】已知f(x)=Acos(ωx+φ)(A>0,ω>0)的部分图象求其解析式时,A比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.13、(1);(2)5年;(3)17年.【解析】(1)设森林面积的年增长率为,则,解出,即可求解;(2)设该地已经植树造林年,则,解出的值,即可求解;(3)设为使森林面积至少达到亩,至少需要植树造林年,则,再结合对数函数的公式,即可求解.【小问1详解】解:设森林面积的年增长率为,则,解得【小问2详解】解:设该地已经植树造林年,则,,解得,故该地已经植树造林5年【小问3详解】解:设为使森林面积至少达到亩,至少需要植树造林年,则,,,,即取17,故为使森林面积至少达到亩,至少需要植树造林17年14、【解析】利用三角函数的平方关系式,化简求解即可【详解】===又,所以,所以=,故填:【点睛】本题考查同角三角函数的基本关系式的应用,三角函数的化简求值,考查计算能力15、3【解析】根据得到周期为2,可得结合可求得答案.【详解】解:∵,所以周期为2的函数,又∵,∴故答案为:316、【解析】由题得几何体为圆锥的,根据三视图的数据计算体积即可【详解】由三视图可知几何体为圆锥的,圆锥的底面半径为2,母线长为4,∴圆锥的高为∴V=×π×22×=故答案为【点睛】本题主要考查了圆锥的三视图和体积计算,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)直接代入两点计算得到答案.(2)变换得到,判断在上单调递减,计算,解不等式得到答案.【详解】(1)由题意得解得,.故,(2)不等式,即不等式,则不等式在上恒成立,即不等式上恒成立,即在上恒成立因为在上单调递减,在上单调递减,所以在上单调递减,故.因为在上恒成立,所以,即,解得故m的取值范围为【点睛】本题考查了函数的解析式,恒成立问题,将恒成立问题转化为函数的最值是解题的关键.18、(1)2(2)(3)【解析】小问1:先求解函数周期再求得参数的值;小问2:根据对称轴求出的值,结合正弦函数单调减区间定义即可求解;小问3:因为,所以,结合正弦函数的值域即可求出结果【小问1详解】因为函数的图象与轴的任意两个相邻交点间的距离为,所以函数的周期,所以【小问2详解】因为直线是函数图象的一条对称轴,所以,.又,所以所以函数的解析式是令,解得所以函数的单调递减区间为【小问3详解】因为,所以.所以,即函数的值域为19、(1),(2)【解析】(1)由条件可得,然后可解出,然后利用对勾函数的知识可得答案;(2)设,条件中的不等式可变形为,即可得在区间(2,4)递增,然后分、、三种情况讨论求解即可.【小问1详解】因为①,所以②,联立①②解得.当时为增函数,时为减函数,因为所以【小问2详解】对,,,都有,不妨设,则由恒成立,也即可得函数在区间(2,4)递增;当,即时,满足题意;当,即时,为两个在上单调递增函数的和,则可得在单调递增,从而满足在(2,4)递增,符合题意;当,即时,,其在递减,在递增,若使在(2,4)递增,则只需;综上可得:20、(1)(2)【解析】(1)结合指数运算求得正确答案.(2)结合对数运算求得正确答案.【小问1详解】原式【小问2详解】原式21、(1)选择①②④三个条件,(2)【解析】(1)根据各条件之间的关系,可确定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论