版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届四川省安岳县周礼中学高一上数学期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.关于x的方程恰有一根在区间内,则实数m的取值范围是()A. B.C. D.2.若集合,,则()A. B.C. D.3.已知函数,现有下列四个结论:①对于任意实数a,的图象为轴对称图形;②对于任意实数a,在上单调递增;③当时,恒成立;④存在实数a,使得关于x的不等式的解集为其中所有正确结论的序号是()A.①② B.③④C.②③④ D.①②④4.若是定义在(-∞,+∞)上的偶函数,∈[0,+∞)且(),则()A. B.C. D.5.为了鼓励大家节约用水,北京市居民用水实行阶梯水价,其中每户的户年用水量与水价的关系如下表所示:分档户年用水量(立方米)水价(元/立方米)第一阶梯0-180(含)5第二阶梯181-260(含)7第三阶梯260以上9假设居住在北京的某户家庭2021年的年用水量为200m3,则该户家庭A.1800元 B.1400元C.1040元 D.1000元6.若角,均为锐角,,,则()A. B.C. D.7.用二分法求如图所示函数f(x)的零点时,不可能求出的零点是()A.x1 B.x2C.x3 D.x48.已知函数f(x)=有两不同的零点,则的取值范围是()A.(−∞,0) B.(0,+∞)C.(−1,0) D.(0,1)9.设,,,则,,三者的大小关系是()A. B.C. D.10.三个数的大小关系是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数(1)当时,求的值域;(2)若,且,求的值;12.已知平面向量,,若,则______13.已知定义在上的函数满足:①;②在区间上单调递减;③的图象关于直线对称,则的解析式可以是________14.当曲线与直线有两个相异交点时,实数的取值范围是________15.下列命题中正确的是________(1)是的必要不充分条件(2)若函数的最小正周期为(3)函数的最小值为(4)已知函数,在上单调递增,则16.若,,三点共线,则实数的值是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是定义在上的增函数,且.(1)求的值;(2)若,解不等式.18.已知直线经过点,且与直线垂直.(1)求直线的方程;(2)若直线与平行且点到直线的距离为,求直线的方程.19.若函数是定义在实数集上的奇函数,并且在区间上是单调递增的函数.(1)研究并证明函数在区间上的单调性;(2)若实数满足不等式,求实数的取值范围.20.已知集合,其中,集合若,求;若,求实数的取值范围21.某市一家庭今年一月份、二月份和三月份煤气用量和支付费用如下表所示:月份用气量(立方米)煤气费(元)144.0022514.0033519.00该市煤气收费的方法是:煤气费=基本费+超额费+保险费若每月用气量不超过最低额度A(A>4)立方米时,只付基本费3元和每户每月定额保险费C(0<C≤5)元;若用气量超过A立方米时,超过部分每立方米付B元(1)根据上面的表格求A,B,C的值;(2)记该家庭第四月份用气为x立方米,求应交的煤气费y元
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】把方程的根转化为二次函数的零点问题,恰有一个零点属于,分为三种情况,即可得解.【详解】方程对应的二次函数设为:因为方程恰有一根属于,则需要满足:①,,解得:;②函数刚好经过点或者,另一个零点属于,把点代入,解得:,此时方程为,两根为,,而,不合题意,舍去把点代入,解得:,此时方程为,两根为,,而,故符合题意;③函数与x轴只有一个交点,横坐标属于,,解得,当时,方程的根为,不合题意;若,方程的根为,符合题意综上:实数m的取值范围为故选:D2、A【解析】解一元二次不等式化简集合B,再利用交集的定义直接计算作答.【详解】解不等式,即,解得,则,而,所以.故选:A3、D【解析】根据函数的解析式,可知其关于直线,可判断①正确;是由与相加而成,故该函数为单调函数,由此可判断②;根据的函数值情况可判断③;看时情况,结合函数的单调性,可判断④的正误.【详解】对①,因为函数与|的图象都关于直线对称,所以的图象关于直线对称,①正确对②,当时,函数与都单调递增,所以也单调递增,②正确对③,当时,,③错误对④,因为图象关于直线对称,在上单调递减,在上单调递增,且,所以存在,使得的解集为,④正确故选:D4、B【解析】,有当时函数为减函数是定义在上的偶函数即故选5、C【解析】结合阶梯水价直接求解即可.【详解】由表可知,当用水量为180m3时,水费为当水价在第二阶段时,超出20m3,水费为则年用水量为200m3,水价为故选:C6、B【解析】根据给定条件,利用同角公式及差角的正弦公式计算作答.【详解】角,均为锐角,即,而,则,又,则,所以,.故选:B7、C【解析】观察图象可知:点x3的附近两旁的函数值都为负值,∴点x3不能用二分法求,故选C.8、A【解析】函数f(x)=有两不同的零点,可以转化为直线与函数的图象有两个不同的交点,构造不等式即可求得的取值范围.【详解】由题可知方程有两个不同的实数根,则直线与函数的图象有两个不同的交点,作出与的大致图象如下:不妨设,由图可知,,整理得,由基本不等式得,(当且仅当时等号成立)又,所以,解得,故选:A9、D【解析】根据对数的运算变形、,再根据对数函数的性质判断即可;【详解】解:,,因为函数在定义域上单调递增,且,所以,即,故选:D10、A【解析】利用指数函数、对数函数、正弦函数的单调性结合中间量法即可求解【详解】解:,,,故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、(1)(2)【解析】(1)化简函数解析式为,再利用余弦函数的性质求函数的值域即可;(2)由已知得,利用同角之间的关系求得,再利用凑角公式及两角差的余弦公式即可得解.【小问1详解】,,利用余弦函数的性质知,则【小问2详解】,又,,则则12、【解析】求出,根据,即,进行数量积的坐标运算,列出方程,即可求解【详解】由题意知,平面向量,,则;因为,所以,解得故答案为【点睛】本题主要考查了向量的坐标运算,以及向量的数量积的应用,其中解答中根据平面向量垂直的条件,得到关于的方程是解答的关键,着重考查了运算与求解能力,属于基础题.13、(答案不唯一)【解析】取,结合二次函数的基本性质逐项验证可得结论.【详解】取,则,满足①,在区间上单调递减,满足②,的图象关于直线对称,满足③.故答案为:(答案不唯一).14、【解析】由解析式可知曲线为半圆,直线恒过;画出半圆的图象,找到直线与半圆有两个交点的临界状态,利用圆的切线的求解方法和两点连线斜率公式求得斜率的取值范围.【详解】为恒过的直线则曲线图象如下图所示:由图象可知,当直线斜率时,曲线与直线有两个相异交点与半圆相切,可得:解得:又本题正确结果:【点睛】本题考查利用曲线与直线的交点个数求解参数范围的问题,关键是能够通过数形结合的方式找到临界状态,易错点是忽略曲线的范围,误认为曲线为圆.15、(3)(4)【解析】对于(1)对角取特殊值即可验证;对于(2)采用数形结合即可得到答案;对于(3)把函数进行化简为关于的函数,再利用基本不等式即可得到答案;对于(4)用整体的思想,求出单调增区间为,再让即可得到答案.【详解】对于(1),当,当,不满足是的必要条件,故(1)错误;对于(2),函数的最小正周期为,故(2)错误;对于(3),,当且仅当等号成立,故(3)正确;对于(4)函数的单调增区间为,若在上单调递增,则,又,故(4)正确.故答案为:(3)(4).16、5【解析】,,三点共线,,即,解得,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0(2)【解析】(1)直接利用赋值法,令即可得结果;(2)利用已知条件将不等式化为,结合单调性可得结果.【小问1详解】令则有.【小问2详解】∵∴,则可化为,即则,∵在上单调递增∴,解得.即不等式的解集为.18、(1);(2)直线方程为或.【解析】⑴利用相互垂直的直线斜率之间的关系求出直线的斜率,代入即可得到直线的方程;⑵由已知设直线的方程为,根据点到直线的距离公式求得或,即可得到直线的方程解析:(1)由题意直线的斜率为1,所求直线方程为,即.(2)由直线与直线平行,可设直线的方程为,由点到直线的距离公式得,即,解得或.∴所求直线方程为或.19、(1)见解析;(2).【解析】(1)设,则,所以,根据在区间上是单调递增,可得,从而可得函数在区间上是单调递减函数;(2)先证明在区间上是单调递增的函数,根据奇偶性可得在区间上是单调递增的函数,再将变形为,可得,进而可得实数的取值范围.试题解析:(1)设,显然恒成立.设,则,,,则,所以,又在区间上是单调递增,所以,即,所以函数在区间上是单调递减函数.(2)因为是定义在实数集上的奇函数,所以,又因为在区间上是单调递增的函数,所以当时,,当时,,,所以当,有.设,则,所以,即,所以,所以在区间上是单调递增函数.综上所述,在区间上是单调递增的函数.所以由得,即所以.【方法点睛】本题主要考查函数的奇偶性的应用以及抽象函数与复合函数的单调性,属于难题.利用定义法判断函数的单调性的一般步骤是:(1)在已知区间上任取;(2)作差;(3)判断的符号(往往先分解因式,再判断各因式的符号),可得在已知区间上是增函数,可得在已知区间上是减函数.20、(1);【解析】解出二次不等式以及分式不等式得到集合和,根据并集的定义求并集;由集合是集合的子集,可得,根据包含关系列出不等式,求出的取值范围.【详解】集合,由,则,解得,即,,则,则,即,可得,解得,故m的取值范围是【点睛】本题考查集合的交并运算,以及由集合的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 质量管理生产制度
- 水产品生产部规章制度
- 2026广西来宾市忻城县城镇公益性岗位工作人员招聘2人备考考试题库附答案解析
- 生产车间批号管理制度
- 生产现场安全标识制度
- 生产设备招标制度
- 生产单位规章制度范本
- 厂区安全生产会议制度
- 自然经济生产制度
- 2025河南洛阳市瀍河区区属国有企业招聘背景调查事宜参考考试试题附答案解析
- 体育培训教练员制度
- 2025年安全生产事故年度综合分析报告
- 中建给排水施工方案EPC项目
- 电气工程及自动化基于PLC的皮带集中控制系统设计
- 医学教材 常见输液反应的处理(急性肺水肿)
- FURUNO 电子海图 完整题库
- 企业年会摄影拍摄合同协议范本
- 焊接质量控制规范培训课件
- 急诊科护士长述职报告
- JGT334-2012 建筑外墙用铝蜂窝复合板
- 汽车4S店安全生产责任书
评论
0/150
提交评论