2026届吉林省长春六中、八中、十一中等省重点中学高二上数学期末考试试题含解析_第1页
2026届吉林省长春六中、八中、十一中等省重点中学高二上数学期末考试试题含解析_第2页
2026届吉林省长春六中、八中、十一中等省重点中学高二上数学期末考试试题含解析_第3页
2026届吉林省长春六中、八中、十一中等省重点中学高二上数学期末考试试题含解析_第4页
2026届吉林省长春六中、八中、十一中等省重点中学高二上数学期末考试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届吉林省长春六中、八中、十一中等省重点中学高二上数学期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.为调查参加考试的高二级1200名学生的成绩情况,从中抽查了100名学生的成绩,就这个问题来说,下列说法正确的是()A.1200名学生是总体 B.每个学生是个体C.样本容量是100 D.抽取的100名学生是样本2.已知向量,则()A.5 B.6C.7 D.83.中,,,分别为三个内角,,的对边,若,,,则()A. B.C. D.4.已知,,若,则实数的值为()A. B.C. D.25.已知则是的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知数列满足,且,那么()A. B.C. D.7.已知等比数列各项均为正数,且,,成等差数列,则()A. B.C. D.8.已知中,内角,,的对边分别为,,,,.若为直角三角形,则的面积为()A. B.C.或 D.或9.若命题“对任意,使得成立”是真命题,则实数a的取值范围是()A. B.C. D.10.某班级从5名同学中挑出2名同学进行大扫除,若小王和小张在这5名同学之中,则小王和小张都没有被挑出的概率为()A. B.C. D.11.已知抛物线的焦点为,抛物线的焦点为,点在上,且,则直线的斜率为A. B.C. D.12.过点(-2,1)的直线中,被圆x2+y2-2x+4y=0截得的弦最长的直线的方程是()A.x+y+1=0 B.x+y-1=0C.x-y+1=0 D.x-y-1=0二、填空题:本题共4小题,每小题5分,共20分。13.直线被圆所截得的弦的长为_____14.已知抛物线方程为,则其焦点坐标为__________15.直线的倾斜角为______16.过椭圆上一点作轴的垂线,垂足为,则线段中点的轨迹方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆E:的离心率,且右焦点到直线的距离为.(1)求椭圆的标准方程;(2)四边形的顶点在椭圆上,且对角线,过原点,若,证明:四边形的面积为定值.18.(12分)新高考取消文理分科,采用选科模式,这赋予了学生充分的自由选择权.新高考地区某校为了解本校高一年级将来高考选考物理的情况,随机选取了100名高一学生,将他们某次物理测试成绩(满分100分)按照,,,,分成5组,制成如图所示的频率分布直方图.(1)求图中的值并估计这100名学生本次物理测试成绩的中位数.(2)根据调查,本次物理测试成绩不低于60分的学生,高考将选考物理科目;成绩低于60分的学生,高考将不选考物理科目.按分层抽样的方法从测试成绩在,的学生中选取5人,再从这5人中任意选取2人,求这2人中至少有1人高考选考物理科目的概率.19.(12分)已知函数,其中,.(1)当时,求曲线在点处切线方程;(2)求函数的单调区间.20.(12分)已知数列满足(1)求;(2)若,且数列的前n项和为,求证:21.(12分)设数列的前项和为,,且,,(1)若(i)求;(ii)求证数列成等差数列(2)若数列为递增数列,且,试求满足条件的所有正整数的值22.(10分)已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线为l:3x-y+1=0,若x=时,y=f(x)有极值(1)求a,b,c的值;(2)求y=f(x)在区间[-3,1]上最大值和最小值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据总体、个体、样本容量、样本的定义,结合题意,即可判断和选择.【详解】根据题意,总体是名学生的成绩;个体是每个学生的成绩;样本容量是,样本是抽取的100名学生的成绩;故正确的是C.故选:C.2、A【解析】利用空间向量的模公式求解.【详解】因向量,所以,故选:A3、C【解析】利用正弦定理求解即可.【详解】,,,由正弦定理可得,解得,故选:C.4、D【解析】由,然后根据向量数量积的坐标运算即可求解.【详解】解:因,,所以,因为,所以,即,解得,故选:D.5、A【解析】先解不等式,再比较集合包含关系确定选项.【详解】因为,所以是的充分不必要条件,选A.【点睛】本题考查解含绝对值不等式、解一元二次不等式以及充要关系判定,考查基本分析求解能力,属基础题.6、D【解析】由递推公式得到,,,再结合已知即可求解.【详解】解:由,得,,又,那么故选:D7、A【解析】结合等差数列的性质求得公比,然后由等比数列的性质得结论【详解】设的公比为,因为,,成等差数列,所以,即,,或(舍去,因为数列各项为正)所以故选:A8、C【解析】由正弦定理化角为边后,由余弦定理求得,然后分类讨论:或求解【详解】由正弦定理,可化为:,即,所以,,所以,又为直角三角形,若,则,,,,若,则,,,故选:C9、A【解析】由题得对任意恒成立,求出的最大值即可.【详解】解:由题得对任意恒成立,(当且仅当时等号成立)所以故选:A10、B【解析】记另3名同学分别为a,b,c,应用列举法求古典概型的概率即可.【详解】记另3名同学分别为a,b,c,所以基本事件为,,(a,小王),(a,小张),,(b,小王),(b,小张),(c,小王),(c,小张),(小王,小张),共10种小王和小张都没有被挑出包括的基本事件为,,,共3种,综上,小王和小张都没有挑出的概率为故选:B.11、B【解析】根据抛物线的定义,求得p的值,即可得抛物线,的标准方程,求得抛物线的焦点坐标后,再根据斜率公式求解.【详解】因为,所以,解得,所以直线的斜率为.故选B.【点睛】本题考查了抛物线的定义的应用,考查了抛物线的简单性质,涉及了直线的斜率公式;抛物线上的点到焦点的距离等于其到准线的距离;解题过程中注意焦点的位置.12、A【解析】当直线被圆截得的最弦长最大时,直线要经过圆心,即圆心在直线上,然后根据两点式方程可得所求【详解】由题意得,圆的方程为,∴圆心坐标为∵直线被圆截得的弦长最大,∴直线过圆心,又直线过点(-2,1),所以所求直线的方程为,即故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】圆转化为标准式方程,圆心到直线的距离为,圆的半径为,因此所求弦长为考点:1.圆的方程;2.直线被圆截得的弦长的求法;14、【解析】先将抛物线的方程转化为标准方程的形式,即可判断抛物线的焦点坐标为,从而解得答案.【详解】解:因为抛物线方程为,即,所以,,所以抛物线的焦点坐标为,故答案为:.15、【解析】把直线方程化为斜截式,再利用斜率与倾斜角的关系即可得出【详解】设直线的倾斜角为由直线化为,故,又,故,故答案为【点睛】一般地,如果直线方程的一般式为,那么直线的斜率为,且,其中为直线的倾斜角,注意它的范围是16、【解析】相关点法求解轨迹方程.【详解】设,则,则,即,因为,代入可得,即的轨迹方程为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)根据已知条件列出关于a、b、c的方程组求解即可;(2)设,代入,利用韦达定理,通过,结合,转化求解即可【小问1详解】【小问2详解】设,设,代入,得,∵,∴,,∵,得,即,解得,∵,且,又,,整理得,∴为定值18、(1),中位数为;(2).【解析】(1)由频率和为1求参数a,根据直方图及中位数性质求中位数即可.(2)首先由分层抽样原则求选取的5人在、的人数分布情况,再应用列举法求古典概型的概率即可.【小问1详解】由图知:,解得.学生成绩在的频率为;学生成绩在的频率为.设这100名学生本次物理测试成绩的中位数为,则,解得,故估计这100名学生本次物理测试成绩的中位数为.【小问2详解】由(1)知,学生成绩在的频数为,学生成绩在的频数为.按分层抽样的方法从中选取5人,则成绩在的学生被抽取人,分别记为,,成绩在的学生被抽取人,分别记为,,.从中任意选取2人,有,,,,,,,,,这10种选法,其中至少有1人高考选考物理科目的选法有,,,,,,,,这9种,∴这2人中至少有1人高考选考物理科目的概率.19、(1);(2)答案见解析.【解析】(1)当时,,求出函数的导函数,再求出,,再利用点斜式求出切线方程;(2)首先求出函数的导函数,再对参数分类讨论,求出函数的单调区间;【详解】解:(1)当时,,所以,所以,,所以切线方程为:,即:(2)函数定义域为,,因为,①当时,在上恒成立,所以函数的单调递增区间为,无单调递减区间;②当时,由得,由得,所以函数的单调递增区间为,单调递减区间为【点睛】本题考查导数的几何意义,利用导数研究含参函数的单调区间,属于基础题.20、(1)(2)证明见解析【解析】(1)先求得,猜想,然后利用数学归纳法进行证明.(2)利用放缩法证得结论成立.【小问1详解】依题意,,,,猜想,下面用数学归纳法进行证明:当时,结论成立,假设当时结论成立,即,由,,所以当时,有,结论成立,所以当时,.【小问2详解】由(1)得,且为单调递增数列,所以.所以.21、(1);详见解析;(2)5.【解析】(1)由题可得,由条件可依次求各项,即得;猜想,用数学归纳法证明即得;(2)设,由题可得,进而可得,结合条件即求.【小问1详解】(i)∵,且,,,∴,,,∴,,,又,,,∴,∴,解得,,解得,,解得,,解得,∴;(ii)由,,,,猜想数列是首项,公差为的等差数列,,用数学归纳法证明:当时,,成立;假设时,等式成立,即,则时,,∴,∴当时,等式也成立,∴,∴数列是首项,公差为的等差数列.【小问2详解】设,由,,即,∴,又,,,∴,,,,,,∴,,,∴,又数列为递增数列,∴,解得,由,∴,解得.【点睛】关键点点睛:第一问的关键是由条件猜想,然后数学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论