安徽省滁州市九校联考2026届数学高二上期末经典模拟试题含解析_第1页
安徽省滁州市九校联考2026届数学高二上期末经典模拟试题含解析_第2页
安徽省滁州市九校联考2026届数学高二上期末经典模拟试题含解析_第3页
安徽省滁州市九校联考2026届数学高二上期末经典模拟试题含解析_第4页
安徽省滁州市九校联考2026届数学高二上期末经典模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省滁州市九校联考2026届数学高二上期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.不等式的解集为()A. B.C. D.2.已知数列的首项为,且,若,则的取值范围是()A. B.C. D.3.已知是空间的一个基底,若,,若,则()A. B.C.3 D.4.如图,正三棱柱中,,则与平面所成角的正弦值等于()A. B.C. D.5.在等比数列中,,则的公比为()A. B.C. D.6.如图,四棱锥的底面是矩形,设,,,是棱上一点,且,则()A. B.C. D.7.设等差数列的前n项和为,且,则()A.64 B.72C.80 D.1448.已知是抛物线上的点,F是抛物线C的焦点,若,则()A.1011 B.2020C.2021 D.20229.设等差数列的前n项和为,若,,则()A.60 B.80C.90 D.10010.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校男教师的人数为()A.167 B.137C.123 D.11311.现有一根金锤,长5尺,头部1尺,重4斤,尾部1尺,重2斤,若该金锤从头到尾,每一尺的重量构成等差数列,该金锤共重()斤A.6 B.7C.9 D.1512.在正方体中,与直线和都垂直,则直线与的关系是()A.异面 B.平行C.垂直不相交 D.垂直且相交二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的渐近线方程为,,分别为C的左,右焦点,若动点P在C的右支上,则的最小值是______14.两条平行直线与的距离是__________15.沈阳市某高中有高一学生600人,高二学生500人,高三学生550人,现对学生关于消防安全知识了解情况进行分层抽样调查,若抽取了一个容量为n的样本,其中高三学生有11人,则n的值等于________.16.已知是双曲线的左、右焦点,点M是双曲线E上的任意一点(不是顶点),过作角平分线的垂线,垂足为N,O是坐标原点.若,则双曲线E的渐近线方程为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的首项,其前n项和为,且满足.(1)求数列的通项公式;(2)设,数列的前n项和为,且,求n.18.(12分)已知抛物线C:,过点且斜率为k的直线与抛物线C相交于P,Q两点.(1)设点B在x轴上,分别记直线PB,QB的斜率为.若,求点B的坐标;(2)过抛物线C的焦点F作直线PQ的平行线与抛物线C相交于M,N两点,求的值.19.(12分)已知(1)求的最小正周期及单调递增区间;(2)已知钝角内角A,B,C的对边长分别a,b,c,若,,.求a的值20.(12分)已知抛物线y2=2px(p>0)的焦点为F,过F且与x轴垂直的直线交该抛物线于A,B两点,|AB|=4(1)求抛物线的方程;(2)过点F的直线l交抛物线于P,Q两点,若△OPQ的面积为4,求直线l的斜率(其中O为坐标原点)21.(12分)已知函数,.(1)当时,求函数的极值;(2)若存在,使不等式成立,求实数的取值范围.22.(10分)已知直线经过点,且满足下列条件,求相应的方程.(1)过点;(2)与直线垂直.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据一元二次不等式的解法进行求解即可.【详解】,故选:A.2、C【解析】由题意,得到,利用叠加法求得,结合由,转化为恒成立,分,和三种情况讨论,即可求解.【详解】因为,可得,所以,所以,各式相加可得,所以,由,可得恒成立,整理得恒成立,当时,,不等式可化为恒成立,所以;当时,,不等式可化为恒成立;当时,,不等式可化为恒成立,所以,综上可得,实数的取值范围是.故选:C.3、C【解析】由,可得存在实数,使,然后将代入化简可求得结果【详解】,,因,所以存在实数,使,所以,所以,所以,得,,所以,故选:C4、C【解析】取中点,连接,,证明平面,从而可得为与平面所成角,再利用三角函数计算的正弦值.【详解】取中点,连接,,在正三棱柱中,底面是正三角形,∴,又∵底面,∴,又,∴平面,∴为与平面所成角,由题意,,,在中,.故选:C5、D【解析】利用等比数列的性质把方程都变成和有关的式子后进行求解.【详解】由等比数列的等比中项性质可得,又,所以,因,所以,所以,故选:D.6、B【解析】根据空间向量基本定理求解【详解】由已知故选:B7、B【解析】利用等差数列下标和性质,求得,再用等差数列前项和公式即可求解.【详解】根据等差数列的下标和性质,,解得,.故选:B.8、C【解析】结合向量坐标运算以及抛物线的定义求得正确答案.【详解】设,因为是抛物线上的点,F是抛物线C的焦点,所以,准线为:,因此,所以,即,由抛物线的定义可得,所以故选:C9、D【解析】由题设条件求出,从而可求.【详解】设公差为,因为,,故,解得,故,故选:D.10、C【解析】根据图形分别求出初中部和高中部男教师的人数,最后相加即可.【详解】初中部男教师的人数为110×(170%)=33;高中部男教师的人数为150×60%=90,∴该校男教师的人数为33+90=123.故选:C.11、D【解析】设该等差数列为,其公差为,根据题意和等差数列的性质可得,进而求出结果.【详解】设该等差数列为,其公差为,由题意知,,由,解得,所以.故选:D12、B【解析】以为坐标原点,所在直线分别为轴,轴,轴建立空间直角坐标系,根据向量垂直的坐标表示求出,再利用向量的坐标运算可得,根据共线定理即可判断.【详解】设正方体的棱长为1.以为坐标原点,所在直线分别为轴,轴,轴建立空间直角坐标系,则.设,则,取.,.故选:B【点睛】本题考查了空间向量垂直的坐标表示、空间向量的坐标表示、空间向量共线定理,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先根据双曲线的渐近线方程和焦点坐标,求出双曲线的标准方程;设,根据双曲线的定义可知,从而利用基本不等式即可求出的最小值.【详解】因为双曲线的渐近线方程为,焦点坐标为,,所以,即,所以双曲线方程为.设,则,且,,当且仅当,即时等号成立,所以的最小值是.故答案为:.14、5【解析】根据两平行直线,可求得a值,根据两平行线间距离公式,即可得答案.【详解】因为两平行直线与,所以,解得,所以两平行线的距离.故答案为:515、33【解析】根据分层抽样的性质进行求解即可.【详解】因为抽取了一个容量为n的样本,其中高三学生有11人,所以有,故答案为:3316、【解析】延长交于点,利用角平分线结合中位线和双曲线定义求得的关系,然后利用,及渐近线方程即可求得结果.【详解】延长交于点,∵是的平分线,,,又是中点,所以,且,又,,,又,双曲线E的渐近线方程为故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由条件得,则利用等差数列的定义可得答案;(2)利用裂项求和求出,再根据可求出n.【小问1详解】由得,从而数列是以1为首项,1为公差的等差数列,所以;【小问2详解】由(1)得,由得又,所以.18、(1)(2)【解析】(1)直线的方程为,其中,联立直线与抛物线方程,由韦达定理结合已知条件可求得点的坐标;(2)直线的方程为,利用倾斜角定义知,,联立直线与抛物线方程,利用弦长公式求得,进而得解.小问1详解】由题意,直线的方程为,其中.设,联立,消去得..,,即.,即.,,∴点的坐标为.【小问2详解】由题意,直线的方程为,其中,为倾斜角,则,设.联立,消去得...19、(1),;(2)2.【解析】(1)利用三角恒等变换公式化简函数,再利用三角函数性质计算作答.(2)由(1)的结论及已知求出角C,再利用余弦定理计算判断作答.【小问1详解】依题意,,则的最小正周期,由,解得,则在上单调递增,所以的最小正周期为,递增区间为.【小问2详解】由(1)知,,即,在中,,,则,即,,于是得,解得,在中,由余弦定理得:,即,解得或,当时,,为直角三角形,与是钝角三角形矛盾,当时,,,此时,是钝角三角形,则,所以a的值是2.20、(1);(2).【解析】(1)根据抛物线的定义以及抛物线通径的性质可得,从而可得结果;(2)设直线的方程为,代入,得,利用弦长公式,结合韦达定理可得的值,由点到直线的距离公式,根据三角形面积公式可得,从而可得结果.【详解】(1)由抛物线的定义得到准线的距离都是p,所以|AB|=2p=4,所以抛物线的方程为y2=4x(2)设直线l的方程为y=k(x-1),P(x1,y1),Q(x2,y2)因为直线l与抛物线有两个交点,所以k≠0,得,代入y2=4x,得,且恒成立,则,y1y2=-4,所以又点O到直线l的距离,所以,解得,即【点睛】本题主要考查直线与抛物线的位置关系的相关问题,意在考查综合利用所学知识解决问题能力和较强的运算求解能力,其常规思路是先把直线方程与圆锥曲线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题21、(1)函数在上递增,在上递减,极大值为,无极小值(2)【解析】(1)求出函数的导函数,再根据导数的符号求得单调区间,再根据极值的定义即可得解;(2)若存在,使不等式成立,问题转化为,令,,利用导数求出函数的最大值即可得出答案.【小问1详解】解:当时,,则,当时,,当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论