贵州省毕节市织金第一中学2026届高二数学第一学期期末考试试题含解析_第1页
贵州省毕节市织金第一中学2026届高二数学第一学期期末考试试题含解析_第2页
贵州省毕节市织金第一中学2026届高二数学第一学期期末考试试题含解析_第3页
贵州省毕节市织金第一中学2026届高二数学第一学期期末考试试题含解析_第4页
贵州省毕节市织金第一中学2026届高二数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省毕节市织金第一中学2026届高二数学第一学期期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是6”,丙表示事件“两次取出的球的数字之和是5”,丁表示事件“两次取出的球的数字之和是偶数”,则下列判断正确的是()A.甲与丙是互斥事件 B.乙与丙是对立事件C.甲与丁是对立事件 D.丙与丁是互斥事件2.已知双曲线,则双曲线的离心率为()A. B.C. D.3.抛物线的焦点到准线的距离为()A. B.C. D.14.“”是“方程表示焦点在x轴上的椭圆”的()A.充要条件 B.必要而不充分条件C.充分而不必要条件 D.既不充分也不必要条件5.点A是曲线上任意一点,则点A到直线的最小距离为()A. B.C. D.6.双曲线的离心率是,则双曲线的渐近线方程是()A. B.C. D.7.在区间内随机取一个数x,则使得的概率为()A. B.C. D.8.已知圆柱的表面积为定值,当圆柱的容积最大时,圆柱的高的值为()A.1 B.C. D.29.下列数列中成等差数列的是()A. B.C. D.10.已知椭圆是椭圆上关于原点对称的两点,设以为对角线的椭圆内接平行四边形的一组邻边斜率分别为,则()A.1 B.C. D.11.等比数列的前项和为,前项积为,,当最小时,的值为()A.3 B.4C.5 D.612.函数f(x)=-1+lnx,对∀x0,f(x)≥0成立,则实数a的取值范围是()A(-∞,2] B.[2,+∞)C.(-∞,1] D.[1,+∞)二、填空题:本题共4小题,每小题5分,共20分。13.某学生到某工厂进行劳动实践,利用打印技术制作模型.如图,该模型为一个大圆柱中挖去一个小圆柱后的剩余部分(两个圆柱底面圆的圆心重合),大圆柱的轴截面是边长为的正方形,小圆柱的侧面积是大圆柱侧面积的一半,打印所用原料的密度为,不考虑打印损耗,制作该模型所需原料的质量为________g.(取)14.有一道楼梯共10阶,小王同学要登上这道楼梯,登楼梯时每步随机选择一步一阶或一步两阶,小王同学7步登完楼梯的概率为___________.15.在数列中,满足,则________16.数学家欧拉年在其所著的《三角形几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线,已知的顶点、,其欧拉线的方程为,则的外接圆方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列}的公差为整数,为其前n项和,,(1)求{}的通项公式:(2)设,数列的前n项和为,求18.(12分)如图,在三棱锥中,是边长为2的等边三角形,,O是BC的中点,(1)证明:平面平面BCD;(2)若三棱锥的体积为,E是棱AC上的一点,当时,二面角E-BD-C大小为60°,求t的值19.(12分)已知数列满足且(1)求证:数列为等差数列,并求数列的通项公式;(2)设,求数列的前n项和为.20.(12分)在平面直角坐标系中,已知点,,过点的动直线与过点的动直线的交点为P,,的斜率均存在且乘积为,设动点Р的轨迹为曲线C.(1)求曲线C的方程;(2)若点M在曲线C上,过点M且垂直于OM的直线交C于另一点N,点M关于原点O的对称点为Q.直线NQ交x轴于点T,求的最大值.21.(12分)如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,侧棱底面ABCD,,,E为PB中点,F为PC上一点,且(1)求证:;(2)求平面DEF与平面ABCD所成锐二面角的余弦值22.(10分)已知抛物线C:上一点到焦点F的距离为2(1)求实数p的值;(2)若直线l过C的焦点,与抛物线交于A,B两点,且,求直线l的方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据互斥事件和对立事件的定义判断【详解】当第一次取出1,第二次取出4时,甲丙同时发生,不互斥不对立;第二次取出的球的数字是6与两次取出的球的数字之和是5不可能同时发生,但可以同时不发生,不对立,当第一次取出1,第二次取出3时,甲与丁同时发生,不互斥不对立,两次取出的球的数字之和是5与两次取出的球的数字之和是偶数不可以同时发生,但可以同时不发生,因此是互斥不对立故选:D2、D【解析】由双曲线的方程及双曲线的离心率即可求解.【详解】解:因为双曲线,所以,所以双曲线的离心率,故选:D.3、B【解析】由可得抛物线标椎方程为:,由焦点和准线方程即可得解.【详解】由可得抛物线标准方程为:,所以抛物线的焦点为,准线方程为,所以焦点到准线的距离为,故选:B【点睛】本题考了抛物线标准方程,考查了焦点和准线相关基本量,属于基础题.4、A【解析】由椭圆的标准方程结合充分必要条件的定义即得.【详解】若,则方程表示焦点在轴上的椭圆;反之,若方程表示焦点在轴上的椭圆,则;所以“”是“方程表示焦点在x轴上的椭圆”的充要条件.故选:A.5、A【解析】动点在曲线,则找出曲线上某点的斜率与直线的斜率相等的点为距离最小的点,利用导数的几何意义即可【详解】不妨设,定义域为:对求导可得:令解得:(其中舍去)当时,,则此时该点到直线的距离为最小根据点到直线的距离公式可得:解得:故选:A6、B【解析】利用双曲线的离心率,以及渐近线中,关系,结合找关系即可【详解】解:,又因为在双曲线中,,所以,故,所以双曲线的渐近线方程为,故选:B7、A【解析】解一元一次不等式求不等式在上解集,再利用几何概型的长度模型求概率即可.【详解】由,可得,其中长度为1,而区间长度为4,所以,所求概率为故选:A.8、B【解析】设圆柱的底面半径为,则圆柱底,圆柱侧,则可得,则圆柱的体积为,利用导数求出最大值,确定值.【详解】设圆柱的底面半径为,则圆柱底,圆柱侧,∴,∴,则圆柱的体积,∴,由得,由得,∴当时,取极大值,也是最大值,即故选:B【点睛】本题主要考查了圆柱表面积和体积的计算,考查了导数的实际应用,考查了学生的应用意识.9、C【解析】利用等差数列定义,逐一验证各个选项即可判断作答.【详解】对于A,,A不是等差数列;对于B,,B不是等差数列;对于C,,C是等差数列;对于D,,D不是等差数列.故选:C10、C【解析】根据椭圆的对称性和平行四边形的性质进行求解即可.【详解】是椭圆上关于原点对称两点,所以不妨设,即,因为平行四边形也是中心对称图形,所以也是椭圆上关于原点对称的两点,所以不妨设,即,,得:,即,故选:C11、B【解析】根据等比数列相关计算得到,,进而求出与,代入后得到,利用指数函数和二次函数单调性得到当时,取得最小值.【详解】显然,由题意得:,,两式相除得:,将代入,解得:,所以,所以,,所以,其中单调递增,所以当时,取得最小值.故选:B12、B【解析】由导数求得的最小值,由最小值非负可得的范围【详解】定义域是,,若,则在上恒成立,单调递增,,不合题意;若,则时,,递减,时,,递增,所以时,取得极小值也是最小值,由题意,解得故选:B二、填空题:本题共4小题,每小题5分,共20分。13、4500【解析】根据题意可知大圆柱的底面圆的半径,两圆柱的高,设小圆柱的底面圆的半径为,再根据小圆柱的侧面积是大圆柱侧面积的一半,求出小圆柱的底面圆的半径,然后求出该模型的体积,从而可得出答案.【详解】解:根据题意可知大圆柱的底面圆的半径,两圆柱的高,设小圆柱的底面圆的半径为,则有,即,解得,所以该模型的体积为,所以制作该模型所需原料的质量为.故答案:4500.14、【解析】由题意可分为步、步、步、步、步、步共6种情况,分别求出每种的基本事件数,再利用古典概型的概率公式计算可得;【详解】解:由题意可分为步、步、步、步、步、步共6种情况,①步:即步两阶,有种;②步:即步两阶与步一阶,有种;③步:即步两阶与步一阶,有种;④步:即步两阶与步一阶,有种;⑤步:即步两阶与步一阶,有种;⑥步:即步一阶,有种;综上可得一共有种情况,满足7步登完楼梯的有种;故7步登完楼梯的概率为故答案为:15、15【解析】根据递推公式,依次代入即可求解.【详解】数列满足,当时,可得,当时,可得,当时,可得,故答案为:15.16、【解析】求出线段的垂直平分线方程,与欧拉线方程联立,求出的外接圆圆心坐标,并求出外接圆的半径,由此可得出的外接圆方程.【详解】直线的斜率为,线段的中点为,所以,线段的垂直平分线的斜率为,则线段垂直平分线方程为,即,联立,解得,即的外心为,所以,的外接圆的半径为,因此,的外接圆方程为.故答案为:.【点睛】方法点睛:求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线;(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据题意利用等差数列的性质列出方程,即可解得答案;(2)根据(1)的结果,求出的表达式,利用裂项求和的方法求得答案.小问1详解】设等差数列{}的公差为d,则,整理可得:,∵d是整数,解得,从而,所以数列{}的通项公式为:;【小问2详解】由(1)知,,所以18、(1)证明见解析(2)3【解析】(1)证得平面BCD,结合面面垂直判定定理即可得出结论;(2)建立空间直角坐标系,利用空间向量求二面角的公式可得,进而解方程即可求出结果.【小问1详解】因为,O是BC的中点,所以,又因为,且,平面BCD,平面BCD,所以平面BCD,因为平面ABC,所以平面平面BCD【小问2详解】连接OD,又因为是边长为2的等边三角形,所以,由(1)知平面BCD,所以AO,BC,DO两两互相垂直以O为坐标原点,OA,OB,OD所在直线分别为x轴,y轴,z轴建立如图所示空间直角坐标系设,则O(0,0,0),A(0,0,m),B(1,0,0),C(-1,0,0),,因为A-BCD的体积为,所以,解得,即A(0,0,3),,∵,∴,设平面BCD的法向量为,,则,取平面BCD的法向量为,,,设是平面BDE的法向量,则,∴取平面BDE的法向量,解得或(舍)19、(1)证明见解析,;(2).【解析】(1)对递推公式进行变形,结合等差数列的定义进行求解即可;(2)运用裂项相消法进行求解即可.【小问1详解】因为,且,所以即,所以数列是公差为2的等差数列.又,所以即;【小问2详解】由(1)得,所以.故.20、(1)(2)【解析】(1)设点坐标为,根据两直线的斜率之积为得到方程,整理即可;(2)设,,,根据设、在椭圆上,则,再由,则,即可表示出直线、的方程,联立两直线方程,即可得到点的纵坐标,再根据弦长公式得到,令,则,最后利用基本不等式计算可得;【小问1详解】解:设点坐标为,定点,,直线与直线的斜率之积为,,【小问2详解】解:设,,,则,,所以又,所以,又即,则直线:,直线:,由,解得,即,所以令,则,所以因为,当且仅当即时取等号,所以的最大值为;21、(1)证明见解析(2)【解析】(1)依题意可得,再由,即可得到平面,从而建立空间直角坐标系,利用空间向量法证明即可;(2)利用空间向量法求出二面角的余弦值;【小问1详解】证明:因为平面,平面,平面,则,,又,因为,,平面,所以平面,故以点为坐标原点,建立空间直角坐标系如图所示,则,0,,,0,,,1,,,1,,,0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论