版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届贵州省遵义市求是高级中学高一数学第一学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.与-2022°终边相同的最小正角是()A.138° B.132°C.58° D.42°2.某几何体的三视图如图所示,则该几何体的体积是A. B.8C.20 D.243.已知,,,则a,b,c三个数的大小关系是()A. B.C. D.4.过点与且圆心在直线上的圆的方程为A. B.C. D.5.已知函数在区间上是单调增函数,则实数的取值范围为()A. B.C. D.6.函数的零点所在的区间是()A. B.C. D.7.过点,且圆心在直线上的圆的方程是()A. B.C. D.8.已知,,,则的大小关系为()A. B.C. D.9.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为14人,则样本中的中年职工人数为()A.10 B.30C.50 D.7010.在下列区间中函数的零点所在的区间为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,写出一个满足条件的的值:______12.函数是幂函数,且当时,是减函数,则实数=_______13.若,则________14.已知幂函数的图象过点______15.已知,函数在上单调递增,则的取值范围是__16.已知某扇形的周长是,面积为,则该扇形的圆心角的弧度数是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.2021年起,辽宁省将实行“3+1+2”高考模式,为让学生适应新高考的赋分模式某校在一次校考中使用赋分制给高三年级学生的化学成绩进行赋分,具体赋分方案如下:先按照考生原始分从高到低按比例划定A、B、C、D、E共五个等级,然后在相应赋分区间内利用转换公式进行赋分A等级排名占比15%,赋分分数区间是86-100;B等级排名占比35%,赋分分数区间是71-85;C等级排名占比35%,赋分分数区间是56-70;D等级排名占比13%,赋分分数区间是41-55;E等级排名占比2%,赋分分数区间是30-40;现从全年级的化学成绩中随机抽取100名学生的原始成绩(未赋分)进行分析,其频率分布直方图如图所示:(1)求图中a的值;(2)用样本估计总体的方法,估计该校本次化学成绩原始分不少于多少分才能达到赋分后的C等级及以上(含C等级)?(结果保留整数)(3)若采用分层抽样的方法,从原始成绩在[40,50)和[50,60)内的学生中共抽取5人,查看他们的答题情况来分析知识点上的缺漏,再从中选取2人进行调查分析,求这2人中恰有一人原始成绩在[40,50)内的概率.18.如图,已知直线//,是直线、之间的一定点,并且点到直线、的距离分别为1、2,垂足分别为E、D,是直线上一动点,作,且使与直线交于点.试选择合适的变量分别表示三角形的直角边和面积S,并求解下列问题:(1)若为等腰三角形,求和的长;(2)求面积S最小值.19.若函数是定义在实数集上的奇函数,并且在区间上是单调递增的函数.(1)研究并证明函数在区间上的单调性;(2)若实数满足不等式,求实数的取值范围.20.已知函数f(x)=coscos-sinxcosx+(1)求函数f(x)的最小正周期和最大值;(2)求函数f(x)单调递增区间21.已知函数,.(1)求函数的定义域;(2)求不等式的解集.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据任意角的周期性,将-2022°化为,即可确定最小正角.【详解】由-2022°,所以与-2022°终边相同的最小正角是138°.故选:A2、C【解析】由三视图可知,该几何体为长方体上方放了一个直三棱柱,其体积为:.故选C点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图3、A【解析】利用指数函数的单调性比较的大小,再用作中间量可比较出结果.【详解】因为指数函数为递减函数,且,所以,所以,因为,,所以,综上所述:.故选:A4、B【解析】先求得线段AB的中垂线的方程,再根据圆心又在直线上求得圆心,圆心到点A的距离为半径,可得圆的方程.【详解】因为过点与,所以线段AB的中点坐标为,,所以线段AB的中垂线的斜率为,所以线段AB的中垂线的方程为,又因为圆心在直线上,所以,解得,所以圆心为,所以圆的方程为.故选:B【点睛】本题主要考查圆的方程的求法,还考查了运算求解的能力,属于中档题.5、B【解析】根据二次函数的图象与性质,可知区间在对称轴的右面,即,即可求得答案.【详解】函数为对称轴开口向上的二次函数,在区间上是单调增函数,区间在对称轴的右面,即,实数的取值范围为.故选B.【点睛】本题考查二次函数的图象与性质,明确二次函数的对称轴、开口方向与函数的单调性的关系是解题关键.6、B【解析】根据函数零点存在性定理判断即可【详解】,,,故零点所在区间为故选:B7、B【解析】由题设得的中垂线方程为,其与交点即为所求圆心,并应用两点距离公式求半径,写出圆的方程即可.【详解】由题设,的中点坐标为,且,∴的中垂线方程为,联立,∴,可得,即圆心为,而,∴圆的方程是.故选:B8、A【解析】由题,,,所以的大小关系为.故选A.点晴:本题考查的是对数式的大小比较.解决本题的关键是利用对数函数的单调性比较大小,当对数函数的底数大于0小于1时,对数函数是单调递减的,当底数大于1时,对数函数是单调递增的;另外由于对数函数过点(1,0),所以还经常借助特殊值0,1,2等比较大小.9、A【解析】利用分层抽样的等比例性质,结合已知求样本中中年职工人数.【详解】由题意知,青年职工人数:中年职工人数:老年职工人数=350:250:150=7:5:3由样本中的青年职工为14人,可得中年职工人数为10故选:A10、A【解析】根据解析式判断函数单调性,再结合零点存在定理,即可判断零点所处区间.【详解】因为是单调增函数,故是单调增函数,至多一个零点,又,故的零点所在的区间为.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、(答案不唯一)【解析】利用,可得,,计算即可得出结果.【详解】因为,所以,则,或,故答案为:(答案不唯一)12、-1【解析】根据幂函数的定义,令m2﹣m﹣1=1,求出m的值,再判断m是否满足幂函数当x∈(0,+∞)时为减函数即可【详解】解:∵幂函数,∴m2﹣m﹣1=1,解得m=2,或m=﹣1;又x∈(0,+∞)时,f(x)为减函数,∴当m=2时,m2+m﹣3=3,幂函数为y=x3,不满足题意;当m=﹣1时,m2+m﹣3=0,幂函数为y=x﹣3,满足题意;综上,m=﹣1,故答案为﹣1【点睛】本题考查了幂函数的定义与图像性质的应用问题,解题的关键是求出符合题意的m值13、##0.5【解析】利用诱导公式即得.【详解】∵,∴.故答案为:.14、3【解析】利用幂函数的定义先求出其解析式,进而得出答案【详解】设幂函数为常数,幂函数的图象过点,,解得故答案为3【点睛】本题考查幂函数的定义,正确理解幂函数的定义是解题的关键15、【解析】本题已知函数的单调区间,求参数的取值范围,难度中等.由,得,又函数在上单调递增,所以,即,注意到,即,所以取,得考点:函数的图象与性质【方法点晴】已知函数为单调递增函数,可得变量的取值范围,其必包含区间,从而可得参数的取值范围,本题还需挖掘参数的隐含范围,即函数在上单调递增,可知,因此,综合题16、2【解析】由扇形的周长和面积,可求出扇形的半径及弧长,进而可求出该扇形的圆心角.【详解】设扇形的半径为,所对弧长为,则有,解得,故.故答案为:2.【点睛】本题考查扇形面积公式、弧长公式的应用,考查学生的计算求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)a0.030;(2)54分;(3).【解析】(1)由各组频率和为1列方程即可得解;(2)由频率分布直方图结合等级达到C及以上所占排名等级占比列方程即可的解;(3)列出所有基本事件及满足要求的基本事件,由古典概型概率公式即可得解.【详解】(1)由题意,(0.0100.0150.015a0.0250.005)101,所以a0.030;(2)由已知等级达到C及以上所占排名等级占比为15%+35%+35%=85%,假设原始分不少于x分可以达到赋分后的C等级及以上,易得,则有(0.0050.0250.0300.015)10(60x)0.0150.85,解得x≈53.33(分),所以原始分不少于54分才能达到赋分后的C等级及以上;(3)由题知得分在[40,50)和[50,60)内的频率分别为0.1和0.15,则抽取的5人中,得分在[40,50)内的有2人,得分在[50,60)的有3人记得分在[50,60)内的3位学生为a,b,c,得分在[40,50)内的2位学生为D,E,则从5人中任选2人,样本空间可记为{ab,ac,aD,aE,bc,bD,bE,cD,cE,DE},共包含10个样本用A表示“这2人中恰有一人得分在[40,50)内”,则A{aD,aE,bD,bE,cD,cE},A包含6个样本,故所求概率.【点睛】关键点点睛:解决本题的关键是对频率分布直方图的准确把握,在使用列举法解决古典概型的问题时,要注意不遗漏不重复.18、(1),;(2)2.【解析】(1)根据相似三角形的判定定理和性质定理,结合等腰三角形的性质、勾股定理进行求解即可;(2)根据直角三角形面积公式,结合基本不等式进行求解即可.【小问1详解】由点到直线、的距离分别为1、2,得AE=1、AD=2,由,得,则,由题意得,在中,,从而,由和,得∽,则,即,在中,,在中,,由为等腰三角形,得,则且,故,.【小问2详解】由,,,得在中,,当且仅当即时等号成立,故面积S的最小值为2.19、(1)见解析;(2).【解析】(1)设,则,所以,根据在区间上是单调递增,可得,从而可得函数在区间上是单调递减函数;(2)先证明在区间上是单调递增的函数,根据奇偶性可得在区间上是单调递增的函数,再将变形为,可得,进而可得实数的取值范围.试题解析:(1)设,显然恒成立.设,则,,,则,所以,又在区间上是单调递增,所以,即,所以函数在区间上是单调递减函数.(2)因为是定义在实数集上的奇函数,所以,又因为在区间上是单调递增的函数,所以当时,,当时,,,所以当,有.设,则,所以,即,所以,所以在区间上是单调递增函数.综上所述,在区间上是单调递增的函数.所以由得,即所以.【方法点睛】本题主要考查函数的奇偶性的应用以及抽象函数与复合函数的单调性,属于难题.利用定义法判断函数的单调性的一般步骤是:(1)在已知区间上任取;(2)作差;(3)判断的符号(往往先分解因式,再判断各因式的符号),可得在已知区间上是增函数,可得在已知区间上是减函数.20、(1)最小正周期为T=π,最大值为(2)[kπ-58π,kπ【解析】(Ⅰ)函数的最小正周期为,函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 艺术考级题库及答案
- 2026年工程项目管理题库及答案详解
- 2026年经济学基础与市场分析专业考试题库
- 2025年会计从业资格考试《会计电算化》细选试题及答案
- 2025年安全员之A证考试题库带答案(综合卷)
- 2026年城市隔音屏绿化方案
- 2025年酒店前厅部操作手册
- (2026年)护理不良事件报告及管理制度课件
- 基因编辑疫苗开发-第1篇-洞察与解读
- 个性化职业发展路径规划-洞察与解读
- (一诊)重庆市九龙坡区区2026届高三学业质量调研抽测(第一次)物理试题
- 2026新疆伊犁州新源县总工会面向社会招聘工会社会工作者3人考试备考试题及答案解析
- 2026年榆能集团陕西精益化工有限公司招聘备考题库完整答案详解
- 2026广东省环境科学研究院招聘专业技术人员16人笔试参考题库及答案解析
- 2026年保安员理论考试题库
- 2026年《必背60题》抖音本地生活BD经理高频面试题包含详细解答
- 骆驼祥子剧本杀课件
- 2025首都文化科技集团有限公司招聘9人考试笔试备考题库及答案解析
- 农业科技合作协议2025
- DGTJ08-10-2022 城镇天然气管道工程技术标准
- 包扎技术课件
评论
0/150
提交评论