版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
邯郸市重点中学2026届高一上数学期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数f(x)=是奇函数,若f(2m-1)+f(m-2)≥0,则m的取值范围为()A. B.C. D.2.函数的图象如图所示,则()A. B.C. D.3.函数在单调递增,且为奇函数,若,则满足的的取值范围是A. B.C. D.4.如图,一质点在半径为1的圆O上以点为起点,按顺时针方向做匀速圆周运动,角速度为,5s时到达点,则()A.-1 B.C. D.5.设全集,集合,,则=()A. B.{2,5}C.{2,4} D.{4,6}6.函数的部分图象如图,则()A. B.C. D.7.已知函数,若存在R,使得不等式成立,则实数的取值范围为()A. B.C. D.8.把的图象上各点的横标缩短为原来的(纵坐标不变),再把所得图象向右平移个单位长度,得到的图象,则()A. B.C. D.9.若函数且,则该函数过的定点为()A. B.C. D.10.简谐运动可用函数表示,则这个简谐运动的初相为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的图象恒过定点,点在幂函数的图象上,则=____________12.终边上一点坐标为,的终边逆时针旋转与的终边重合,则______.13.设,向量,,若,则_______14.函数的最小正周期是__________15.已知正数x、y满足x+=4,则xy的最大值为_______.16.已知,,且,若不等式恒成立,则实数m的取值范围为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,设矩形的周长为cm,把沿折叠,折过去后交于点,设cm,cm(1)建立变量与之间的函数关系式,并写出函数的定义域;(2)求的最大面积以及此时的的值18.用水清洗一堆蔬菜上的农药,设用个单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为,且已知用个单位量的水清洗一次,可洗掉本次清洗前残留农药量的,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上(1)根据题意,直接写出函数应该满足的条件和具有的性质;(2)设,现用()个单位量的水可以清洗一次,也可以把水平均分成份后清洗两次,问用哪种方案清洗后蔬菜上残留的农药量比较少,说明理由;(3)若满足题意,直接写出一组参数的值19.已知全集,,集合(1)求;(2)求20.(1)已知方程,的值(2)已知是关于的方程的两个实根,且,求的值21.设集合,,(1),求;(2)若“”是“”的充分条件,求的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由已知结合f(0)=0求得a=-1,得到函数f(x)在R上为增函数,利用函数单调性化f(2m-1)+f(m-2)≥0为f(2m-1)≥f(-m+2),即2m-1≥-m+2,则答案可求【详解】∵函数f(x)=的定义域为R,且是奇函数,,即a=-1,∵2x在(-∞,+∞)上为增函数,∴函数在(-∞,+∞)上为增函数,由f(2m-1)+f(m-2)≥0,得f(2m-1)≥f(-m+2),∴2m-1≥-m+2,可得m≥1∴m的取值范围为m≥1故选B【点睛】本题考查函数单调性与奇偶性的应用,考查数学转化思想方法,是中档题2、C【解析】根据正弦型函数图象与性质,即可求解.【详解】由图可知:,所以,故,又,可求得,,由可得故选:C.3、D【解析】是奇函数,故;又是增函数,,即则有,解得,故选D.【点睛】解本题的关键是利用转化化归思想,结合奇函数的性质将问题转化为,再利用单调性继续转化为,从而求得正解.4、C【解析】由正弦、余弦函数的定义以及诱导公式得出.【详解】设单位圆与轴正半轴的交点为,则,所以,,故.故选:C5、D【解析】由补集、交集的定义,运算即可得解.【详解】因为,,所以,又,所以.故选:D.6、C【解析】先利用图象中的1和3,求得函数的周期,求得,最后根据时取最大值1,求得,即可得解【详解】解:根据函数的图象可得:函数的周期为,∴,当时取最大值1,即,又,所以,故选:C【点睛】本题主要考查了由的部分图象确定其解析式,考查了五点作图的应用和图象观察能力,属于基本知识的考查.属于基础题.7、D【解析】利用函数的奇偶性与单调性把函数不等式变形,然后由分离参数法转化为求函数的最值【详解】是奇函数,且在上是增函数,因此不等式可化为,所以,,由得的最小值是2,所以故选:D8、C【解析】根据三角函数的周期变换和平移变换的原理即可得解.【详解】解:把的图象上各点的横标缩短为原来的(纵坐标不变),可得的函数图像,再把所得图象向右平移个单位长度,可得函数,所以.故选:C.9、D【解析】根据指数函数的图像经过定点坐标是,利用平移可得到答案.【详解】因为指数函数的图像经过定点坐标是,函数图像向右平移个单位,再向上平移个单位,得到,函数的图像过的定点.故选:.【点睛】本题主要考查的是指数函数的图像和性质,考查学生对指数函数的理解,是基础题.10、B【解析】根据初相定义直接可得.【详解】由初相定义可知,当时的相位称为初相,所以,函数的初相为.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】因为函数图象恒过定点,则可之令2x-3=1,x=2,函数值为4,故过定点(2,4),然后根据且点在幂函数的图象上,设,故可知=9,故答案为9.考点:对数函数点评:本题考查了对数函数图象过定点(1,0),即令真数为1求对应的x和y,则是所求函数过定点的坐标12、【解析】由题知,进而根据计算即可.【详解】解:因为终边上一点坐标为,所以,因为的终边逆时针旋转与的终边重合,所以故答案为:13、【解析】根据向量共线的坐标表示,得到,再由二倍角的正弦公式化简整理,即可得出结果.【详解】∵,向量,,∴,∴,∵,∴故答案为:.【点睛】本题主要考查由向量共线求参数,涉及二倍角的正弦公式,熟记向量共线的坐标表示即可,属于常考题型.14、【解析】根据正弦函数的最小正周期公式即可求解【详解】因为由正弦函数的最小正周期公式可得故答案为:15、8【解析】根据,利用基本不等式即可得出答案.【详解】解:,当且仅当,即时,取等号,所以xy的最大值为8.故答案为:8.16、【解析】由基本不等式求得的最小值,解不等式可得的范围【详解】∵,,,,∴,当且仅当,即时等号成立,∴的最小值为8,由解得,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),定义域(2),的最大面积为【解析】(1)由题意可得,再由可求出的取值范围,(2)设,在直角三角形ADP中利用勾股定理可得,从而可求得,化简后利用基本不等式可求得结果【小问1详解】因为,,矩形ABCD的周长为20cm,所以,因为,所以,解得.所以,定义域为【小问2详解】因为ABCD是矩形,所以有,因为是沿折起所得,所以有,,因此有,,所以≌,因此,设.而ABCD是矩形,所以,因此在直角三角形ADP中,有,所以,化简得,当且仅当时取等号,即时,的最大面积为18、(1)答案见解析(2)答案不唯一,具体见解析(3)的值依次为(答案不唯一)【解析】(1)根据题意直接写出定义域,值域,,单调性;(2)分别计算2种方案完成后蔬菜农药残留,做差后分类讨论比较大小即可得出答案;(3)根据(1)中函数的性质,直接写出一组即可.【小问1详解】满足的条件和性质如下:;定义域为;;;在区间上单调递减【小问2详解】设清洗前残留的农药量为,若清洗一次,设清洗后蔬菜上残留的农药量为,则,则若把水平均分成份后清洗两次,设第一次清洗后蔬菜上残留的农药量为,则设第二次清洗后蔬菜上残留的农药量为,,比较与的大小:①当,即时,,即,由不等式的性质可得,所以把水平均分成份后清洗两次蔬菜上残留的农药量比较少;②当,即时,,两种方案清洗后蔬菜上残留的农药量一样多;③当,即时,由不等式的性质可得,所以清洗一次后蔬菜上残留的农药量比较少【小问3详解】参数的值依次为.(答案不唯一)19、(1);(2).【解析】(1)根据集合的并运算,结合已知条件,即可求得结果;(2)先求,再求交集即可.【小问1详解】全集,,集合,故.【小问2详解】集合,故或,故.20、(1);(2)【解析】(1)由已知利用诱导公式化简得到的值,再利用诱导公式化简为含有的形式,代入即可;(2)由根与系数的关系求出的值,结合的范围求出,进一步求出,即可求的值【详解】解:(1)由得:,即,,;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 互联网金融客户身份识别方案
- 品牌代言合同条款解析及范本
- 医院扶持帮扶协议文本模板
- 节能环保班会活动策划方案
- 幼儿园食堂安全卫生管理方案
- 建筑玻璃幕墙施工技术规范解读
- 机关单位档案管理工作流程标准
- 建筑设计方案评审报告范文
- 上市公司财务信息披露管理报告
- 六年级英语单元测试题目集锦解析
- 天津市河东区2026届高一上数学期末考试试题含解析
- 消化内镜ERCP技术改良
- DB37-T6005-2026人为水土流失风险分级评价技术规范
- 云南师大附中2026届高三1月高考适应性月考卷英语(六)含答案
- 2026湖北随州农商银行科技研发中心第二批人员招聘9人笔试备考试题及答案解析
- 纪念馆新馆项目可行性研究报告
- 仁爱科普版(2024)八年级上册英语Unit1~Unit6补全对话练习题(含答案)
- 骑行美食活动方案策划(3篇)
- 石化企业环保培训课件
- 2026年吕梁职业技术学院单招职业技能考试备考试题带答案解析
- 2025年新疆师范大学辅导员招聘考试真题及答案
评论
0/150
提交评论