辽宁省沈阳市重点中学2026届高二上数学期末考试试题含解析_第1页
辽宁省沈阳市重点中学2026届高二上数学期末考试试题含解析_第2页
辽宁省沈阳市重点中学2026届高二上数学期末考试试题含解析_第3页
辽宁省沈阳市重点中学2026届高二上数学期末考试试题含解析_第4页
辽宁省沈阳市重点中学2026届高二上数学期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省沈阳市重点中学2026届高二上数学期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.的展开式中的系数是()A. B.C. D.2.已知等比数列的前项和为,若公比,则=()A. B.C. D.3.已知,则点到平面的距离为()A. B.C. D.4.某地区高中分三类,A类学校共有学生2000人,B类学校共有学生3000人,C类学校共有学生4000人,若采取分层抽样的方法抽取900人,则A类学校中的学生甲被抽到的概率()A. B.C. D.5.已知圆的圆心到直线的距离为,则圆与圆的位置关系是()A.相交 B.内切C.外切 D.外离6.设等差数列前n项和是,若,则的通项公式可以是()A. B.C. D.7.若a>b,c>d,则下列不等式中一定正确的是()A. B.C. D.8.与的等差中项是()A. B.C. D.9.已知命题:,使;命题:,都有,则下列结论正确的是()A.命题“”是真命题: B.命题“”是假命题:C.命题“”是假命题: D.命题“”是假命题10.函数的图象如图所示,则函数的图象可能是A. B.C. D.11.已知,,若,则实数的值为()A. B.C. D.212.在正三棱锥S−ABC中,M、N分别是棱SC、BC的中点,且,若侧棱,则正三棱锥S−ABC外接球的表面积是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.《九章算术》中的“商功”篇主要讲述了以立体几何为主的各种形体体积的计算,其中堑堵是指底面为直角三角形的直棱柱.如图,在堑堵,中,M是的中点,,,,若,则_________14.已知双曲线中心在坐标原点,左右焦点分别为,渐近线分别为,过点且与垂直的直线分别交于两点,且,则双曲线的离心率为________15.已知定点,,P是椭圆上的动点,则的的最小值为______.16.秦九韶出生于普州(今资阳市安岳县),是我国南宋时期伟大的数学家,他创立的秦九韶算法历来为人称道,其本质是将一个次多项式写成个一次式相组合的形式,如可将写成,由此可得__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面,底面是边长为2的正方形,,F,G分别是,的中点(1)求证:平面;(2)求平面与平面的夹角的大小18.(12分)已知椭圆的左、右焦点分别是,点P是椭圆C上任一点,若面积的最大值为,且离心率(1)求C的方程;(2)A,B为C的左、右顶点,若过点且斜率不为0的直线交C于M,N两点,证明:直线与的交点在一条定直线上19.(12分)已知函数的图像在处的切线斜率为,且时,有极值.(1)求的解析式;(2)求在上的最大值和最小值.20.(12分)已知等差数列满足:成等差数列,成等比数列.(1)求的通项公式:(2)在数列的每相邻两项与间插入个,使它们和原数列的项构成一个新数列,数列的前项和记为,求及.21.(12分)已知命题p:,命题q:.(1)若命题p为真命题,求实数x的取值范围.(2)若p是q的充分条件,求实数m的取值范围;22.(10分)已知双曲线的左、右焦点分别为,过作斜率为的弦.求:(1)弦的长;(2)△的周长.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据二项式定理求出答案即可.【详解】的展开式中的系数是故选:B2、A【解析】根据题意,由等比数列的通项公式与前项和公式直接计算即可.【详解】由已知可得.故选:A.3、A【解析】根据给定条件求出平面的法向量,再利用空间向量求出点到平面的距离.【详解】依题意,,设平面的法向量,则,令,得,则点到平面的距离为,所以点到平面的距离为.故选:A4、D【解析】利用抽样的性质求解【详解】所有学生数为,所以所求概率为.故选:D5、B【解析】求出两圆的圆心与半径,根据两圆的位置关系的判定即可求解.【详解】已知圆的圆心到直线的距离,即,解得或,因为,所以,圆的圆心的坐标为,半径,将圆化为标准方程为,其圆心的坐标为,半径,圆心距,两圆内切,故选:B6、D【解析】根据题意可得公差的范围,再逐一分析各个选项即可得出答案.【详解】解:设等差数列的公差为,由,得,所以,故AB错误;若,则,与题意矛盾,故C错误;若,则,符合题意.故选:D.7、B【解析】根据不等式的性质及反例判断各个选项.【详解】因为c>d,所以,所以,所以B正确;时,不满足选项A;时,,且,所以不满足选项CD;故选:B8、A【解析】代入等差中项公式即可解决.【详解】与的等差中项是故选:A9、B【解析】根据正弦函数的性质判断命题为假命题,由判断命题为真命题,从而得出答案.【详解】因为的值域为,所以命题为假命题因为,所以命题为真命题则命题“”是假命题,命题“”是假命题,命题“”是真命题,命题“”是真命题故选:B10、D【解析】原函数先减再增,再减再增,且位于增区间内,因此选D【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与轴的交点为,且图象在两侧附近连续分布于轴上下方,则为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数的正负,得出原函数的单调区间11、D【解析】由,然后根据向量数量积的坐标运算即可求解.【详解】解:因,,所以,因为,所以,即,解得,故选:D.12、A【解析】由题意推出平面,即平面,,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的体积【详解】∵,分别为棱,的中点,∴,∵三棱锥为正棱锥,作平面,所以是底面正三角的中心,连接并延长交与点,∵底面是正三角形,,平面∴,,∵,平面,平面,∴平面,∵平面,∴,∴,又∵,而,且,平面,∴平面,∴平面,∴,因为S−ABC是正三棱锥。所以,以,,为从同一定点出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的体对角线就是球的直径,,所以.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立空间直角坐标系,利用空间向量可以解决问题.【详解】设,如下图所示,建立空间直角坐标系,,,,,,则所以又因为所以故答案为:14、【解析】判断出三角形的形状,求得点坐标,由此列方程求得,进而求得双曲线的离心率.【详解】依题意设双曲线方程为,双曲线的渐近线方程为,右焦点,不妨设.由于,所以是线段的中点,由于,所以是线段的垂直平均分,所以三角形是等腰三角形,则.直线的斜率为,则直线的斜率为,所以直线的方程为,由解得,则,即,化简得,所以双曲线的离心率为.故答案为:15、##【解析】根据椭圆的定义可知,化简并结合基本不等式可求的的最小值.【详解】由题可知:点,是椭圆的焦点,所以,所以,即,当且仅当时等号成立,即时等号成立.所以的最小值为,故答案为:.16、【解析】利用代入法进行求解即可.【详解】故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)取中点连接,连接,证得四边形为平行四边形,,再证面,即可得到证明结果;(2)建立空间坐标系,求面和面的法向量,即可得到两个面的二面角的余弦值,进而得到二面角大小.【小问1详解】如上图,取中点连接,连接,均为线段中点,且,又G是的中点,且且四边形为平行四边形为等腰直角三角形,为斜边中点,面,面面又面.【小问2详解】建立如图坐标系,设面的法向量为设面的法向量为两个法向量的夹角余弦值为:,由图知两个面的二面角为钝角,故夹角为.18、(1);(2)证明见解析.【解析】(1)用待定系数法求出椭圆的方程;(2)设直线MN的方程为x=my+1,设,用“设而不求法”表示出.由直线AM的方程为,直线BN的方程为,联立,解得:,即可证明直线AM与BN的交点在直线上.【小问1详解】由题意可得:,解得:,所以C的方程为.【小问2详解】由(1)得A(-2,0),B(2,0),F2(1,0),设直线MN的方程为x=my+1.设,由,消去y得:,所以.所以.因为直线AM的方程为,直线BN的方程为,二者联立,有,所以,解得:,直线AM与BN的交点在直线上.【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.19、(1);(2)最大值为,最小值为.【解析】(1)由题得①,②,解方程组即得解;(2)令解得或,再列表得解.【小问1详解】解:求导得,因为在出的切线斜率为,则,即①因为时,有极值,则.即②由①②联立得,所以.【小问2详解】解:由(1),令解得或,列表如下:极大值极小值所以,在[-3,2]上的最大值为,最小值为.20、(1);(2),.【解析】(1)根据等差数列和等比数列的通项公式进行求解即可;(2)根据等差数列的通项公式,结合等比数列的前项和公式进行求解即可.【小问1详解】设等差数列的公差为,因为成等差数列,所以有,因成等比数列,所以,所以;【小问2详解】由题意可知:在和之间插入个,在和之间插入个,,在和之间插入个,此时共插入的个数为:,在和之间插入个,此时共插入的个数为:,因此.21、(1);(2).【解析】(1)由一元二次不等式的解法求得的范围;(2)由p是q的充分条件,转化为集合的包含关系,从而可求实数m的取值范围.【详解】(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论