安徽省池州一中2026届高一数学第一学期期末联考模拟试题含解析_第1页
安徽省池州一中2026届高一数学第一学期期末联考模拟试题含解析_第2页
安徽省池州一中2026届高一数学第一学期期末联考模拟试题含解析_第3页
安徽省池州一中2026届高一数学第一学期期末联考模拟试题含解析_第4页
安徽省池州一中2026届高一数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省池州一中2026届高一数学第一学期期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列命题中,真命题是.A.xR,x2+1=x B.xR,x2+1<2xC.xR,x2+1>x D.xR,x2+2x>12.设集合,则中元素的个数为()A.0 B.2C.3 D.43.随着智能手机的普及,手机摄影越来越得到人们的喜爱,要得到美观的照片,构图是很重要的,用“黄金分割构图法”可以让照片感觉更自然、更舒适,“黄金九宫格”是黄金分割构图的一种形式,是指把画面横、竖各分三部分,以比例为分隔,4个交叉点即为黄金分割点.如图,分别用表示黄金分割点.若照片长、宽比例为,设,则()A. B.C. D.4.已知正方体,则异面直线与所成的角的余弦值为A. B.C. D.5.在去年的足球联赛上,一队每场比赛平均失球个数是1.5,全年比赛失球个数的标准差是1.1;二队每场比赛平均失球个数是2.1,全年比赛失球个数的标准差是0.4.则下列说法错误的是()A.平均来说一队比二队防守技术好 B.二队很少失球C.一队有时表现差,有时表现又非常好 D.二队比一队技术水平更不稳定6.已知函数的部分函数值如下表所示:x10.50.750.6250.56250.6321-0.10650.27760.0897-0.007那么函数的一个零点的近似值(精确度为0.01)为()A.0.55 B.0.57C.0.65 D.0.77.已知函数,,则函数的值域为()A B.C. D.8.已知是定义在上的奇函数,且当时,,那么A. B.C. D.9.已知命题p:“”,则为()A. B.C. D.10.已知实数,,,则,,的大小关系为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.用二分法研究函数f(x)=x3+3x-1的零点时,第一次经计算,可得其中一个零点x0∈(0,1),那么经过下一次计算可得x0∈___________(填区间).12.已知长方体的8个顶点都在球的球面上,若,,,则球的表面积为___________.13.如图,已知圆柱的轴截面是矩形,,是圆柱下底面弧的中点,是圆柱上底面弧的中点,那么异面直线与所成角的正切值为__________14.已知函数是定义在上的奇函数,当时,,则的值为______15.函数的值域是____.16.已知函数,则函数的所有零点之和为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.给出以下四个式子:①;②;③;④.(1)已知所给各式都等于同一个常数,试从上述四个式子中任选一个,求出这个常数;(2)分析以上各式的共同特点,写出能反应一般规律的等式,并对等式正确性作出证明.18.已知全集,集合,.(1)当时,求;(2)命题p:,命题q:,若q是p的必要条件,求实数a的取值范围.19.(1)设,求与的夹角;(2)设且与的夹角为,求的值.20.在单位圆中,已知第二象限角的终边与单位圆的交点为,若.(1)求、、的值;(2)分别求、、的值.21.已知全集U=R,集合,,求:(1)A∩B;(2).

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据全称命题和特称命题的含义,以及不等式性质的应用,即可求解.【详解】对于A中,,所以,所以不正确;对于B中,,所以,所以不正确;对于C中,,所以,所以正确;对于D中,,所以不正确,故选C.【点睛】本题主要考查了全称命题与特称命题的真假判定,其中解答中正确理解全称命题和特称命题的含义,以及不等式性质的应用是解答的关键,着重考查了推理与运算能力,属于基础题.2、B【解析】先求出集合,再求,最后数出中元素的个数即可.【详解】因集合,,所以,所以,则中元素的个数为2个.故选:B3、B【解析】依题意可得,即可得到,再利用二倍角公式及同角三角函数的基本关系将弦化切,再代入计算可得;【详解】解:依题意,所以,所以故选:B4、A【解析】将平移到,则异面直线与所成的角等于,连接在根据余弦定理易得【详解】设正方体边长为1,将平移到,则异面直线与所成的角等于,连接.则,所以为等边三角形,所以故选A【点睛】此题考查立体几何正方体异面直线问题,异面直线求夹角,将其中一条直线平移到与另外一条直线相交形成的夹角即为异面直线夹角,属于简单题目5、B【解析】利用平均数和标准差的定义及意义即可求解.【详解】对于A,因为一队每场比赛平均失球数是1.5,二队每场比赛平均失球数是2.1,所以平均说来一队比二队防守技术好,故A正确;对于B,因为二队每场比赛平均失球数是2.1,全年比赛失球个数的标准差为0.4,所以二队经常失球,故B错误;对于C,因为一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,所以一队有时表现很差,有时表现又非常好,故C正确;对于D,因为一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,所以二队比一队技术水平更稳定,故D正确;故选:B.6、B【解析】根据给定条件直接判断函数的单调性,再结合零点存在性定理判断作答.【详解】函数在R上单调递增,由数表知:,由零点存在性定义知,函数的零点在区间内,所以函数的一个零点的近似值为.故选:B7、B【解析】先判断函数的单调性,再利用单调性求解.【详解】因为,在上都是增函数,由复合函数的单调性知:函数,在上为增函数,所以函数的值域为,故选:B8、C【解析】由题意得,,故,故选C考点:分段函数的应用.9、C【解析】根据命题的否定的定义判断【详解】特称命题的否定是全称命题命题p:“”,的否定为:故选:C10、A【解析】利用指数函数和对数函数的单调性比较a三个数与0、1的大小关系,由此可得出a、b、c大小关系.【详解】解析:由题,,,即有.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据零点存在性定理判断零点所在区间.【详解】,,所以下一次计算可得.故答案为:12、【解析】求得长方体外接球的半径,从而求得球的表面积.【详解】由题知,球O的半径为,则球O的表面积为故答案为:13、【解析】取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB中点,所以AD∥BC,所以直线AC1与AD所成角等于异面直线AC1与BC所成角,因为C1是圆柱上底面弧A1B1的中点,所以C1D⊥圆柱下底面,所以C1D⊥AD,因为圆柱的轴截面ABB1A1是矩形,AA1=2AB所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为2故答案为:2.点睛:求两条异面直线所成角关键是作为这两条异面直线所成角,作两条异面直线所成角的方法是:将其中一条一条直线平移与另一条相交相交或是将两条异面直线同时平移到某个位置使他们相交,然后再同一平面内求相交直线所成角,值得注意的是:平移后相交所得的角必须容易算出,因此平移时要求选择恰当位置.14、1【解析】根据题意,由函数在(﹣∞,0)上的解析式可得f(﹣1)的值,又由函数为奇函数可得f(1)=﹣f(﹣1),即可得答案【详解】根据题意,当x∈(﹣∞,0)时,f(x)=2x3+x2,则f(﹣1)=2×(﹣1)3+(﹣1)2=﹣1,又由函数奇函数,则f(1)=﹣f(﹣1)=1;故答案为1【点睛】本题考查函数奇偶性的应用,注意利用奇偶性明确f(1)与f(﹣1)的关系15、##【解析】由余弦函数的有界性求解即可【详解】因为,所以,所以,故函数的值域为,故答案为:16、0【解析】令,得到,在同一坐标系中作出函数的图象,利用数形结合法求解.【详解】因为函数,所以的对称中心是,令,得,在同一坐标系中作出函数的图象,如图所示:由图象知:两个函数图象有8个交点,即函数有8个零点由对称性可知:零点之和为0,故答案为:0三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】分析:(1)利用第二个式子,结合同角三角函数的平方关系,以及正弦的倍角公式,结合特殊角的三角函数值,求得结果;(2)根据题中所给的角之间的关系,归纳推理得到结果,证明过程应用相关公式证明即可.详解:(1).(2).证明如下:.点睛:该题考查是有关三角公式的问题,涉及到的知识点有同角三角函数的关系式,正弦的倍角公式,余弦的差角公式等,正确使用公式是解题的关键.18、(1)(2)【解析】(1)先解分式不等式和二次不等式得集合,再求补集和交集即可;(2)先判断得,再根据必要条件得到集合的包含关系,列不等式求解即可.【小问1详解】∵时,,,全集,∴或.∴【小问2详解】∵命题:,命题:,是必要条件,∴∵,∴,∵,,∴,解得或,故实数的取值范围19、(1);(2)61.【解析】(1)由已知中12,9,,代入平面向量的夹角公式,即可求出θ的余弦值,结合0°≤θ≤180°,即可得到答案(2)利用数量积运算法则即可得出;【详解】(1)∵12,9,,∴cosθ又∵0°≤θ≤180°则θ=135°(2)∵,,且与夹角为120°,∴6∴42﹣(﹣6)﹣3×32=61【点睛】本题考查了向量的数量积运算法则及其性质、夹角公式,属于基础题20、(1),,(2),,【解析】(1)先由三角函数的定义得到,再利用同角三角函数基本关系进行求解;(2)利用诱导公式进行化简求值.【小问1详解】解:由三角函数定义,得,由得,又因为为第二

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论