版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届贵州省贵阳市实验中学数学高三第一学期期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则的大小关系为()A. B. C. D.2.已知数列中,,且当为奇数时,;当为偶数时,.则此数列的前项的和为()A. B. C. D.3.已知向量,,则与的夹角为()A. B. C. D.4.一个超级斐波那契数列是一列具有以下性质的正整数:从第三项起,每一项都等于前面所有项之和(例如:1,3,4,8,16…).则首项为2,某一项为2020的超级斐波那契数列的个数为()A.3 B.4 C.5 D.65.已知椭圆,直线与直线相交于点,且点在椭圆内恒成立,则椭圆的离心率取值范围为()A. B. C. D.6.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为()A.1605π3 B.6427.已知向量,满足,在上投影为,则的最小值为()A. B. C. D.8.已知为虚数单位,实数满足,则()A.1 B. C. D.9.设直线过点,且与圆:相切于点,那么()A. B.3 C. D.110.已知偶函数在区间内单调递减,,,,则,,满足()A. B. C. D.11.M、N是曲线y=πsinx与曲线y=πcosx的两个不同的交点,则|MN|的最小值为()A.π B.π C.π D.2π12.2019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为A.96 B.84 C.120 D.360二、填空题:本题共4小题,每小题5分,共20分。13.已知,满足约束条件,则的最小值为______.14.已知全集,集合则_____.15.某学习小组有名男生和名女生.若从中随机选出名同学代表该小组参加知识竞赛,则选出的名同学中恰好名男生名女生的概率为___________.16.已知椭圆Г:,F1、F2是椭圆Г的左、右焦点,A为椭圆Г的上顶点,延长AF2交椭圆Г于点B,若为等腰三角形,则椭圆Г的离心率为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,空间几何体中,是边长为2的等边三角形,,,,平面平面,且平面平面,为中点.(1)证明:平面;(2)求二面角平面角的余弦值.18.(12分)已知等差数列{an}的前n项和为Sn,且(1)求数列{a(2)求数列{1Sn}的前19.(12分)如图,四棱锥P﹣ABCD的底面是梯形.BC∥AD,AB=BC=CD=1,AD=2,,(Ⅰ)证明;AC⊥BP;(Ⅱ)求直线AD与平面APC所成角的正弦值.20.(12分)已知函数有两个极值点,.(1)求实数的取值范围;(2)证明:.21.(12分)在中,角,,的对边分别为,,,,,且的面积为.(1)求;(2)求的周长.22.(10分)如图,四棱锥中,底面,,点在线段上,且.(1)求证:平面;(2)若,,,,求二面角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据指数函数的单调性,可得,再利用对数函数的单调性,将与对比,即可求出结论.【详解】由题知,,则.故选:A.【点睛】本题考查利用函数性质比较大小,注意与特殊数的对比,属于基础题..2、A【解析】
根据分组求和法,利用等差数列的前项和公式求出前项的奇数项的和,利用等比数列的前项和公式求出前项的偶数项的和,进而可求解.【详解】当为奇数时,,则数列奇数项是以为首项,以为公差的等差数列,当为偶数时,,则数列中每个偶数项加是以为首项,以为公比的等比数列.所以.故选:A【点睛】本题考查了数列分组求和、等差数列的前项和公式、等比数列的前项和公式,需熟记公式,属于基础题.3、B【解析】
由已知向量的坐标,利用平面向量的夹角公式,直接可求出结果.【详解】解:由题意得,设与的夹角为,,由于向量夹角范围为:,∴.故选:B.【点睛】本题考查利用平面向量的数量积求两向量的夹角,注意向量夹角的范围.4、A【解析】
根据定义,表示出数列的通项并等于2020.结合的正整数性质即可确定解的个数.【详解】由题意可知首项为2,设第二项为,则第三项为,第四项为,第五项为第n项为且,则,因为,当的值可以为;即有3个这种超级斐波那契数列,故选:A.【点睛】本题考查了数列新定义的应用,注意自变量的取值范围,对题意理解要准确,属于中档题.5、A【解析】
先求得椭圆焦点坐标,判断出直线过椭圆的焦点.然后判断出,判断出点的轨迹方程,根据恒在椭圆内列不等式,化简后求得离心率的取值范围.【详解】设是椭圆的焦点,所以.直线过点,直线过点,由于,所以,所以点的轨迹是以为直径的圆.由于点在椭圆内恒成立,所以椭圆的短轴大于,即,所以,所以双曲线的离心率,所以.故选:A【点睛】本小题主要考查直线与直线的位置关系,考查动点轨迹的判断,考查椭圆离心率的取值范围的求法,属于中档题.6、A【解析】
设球心为O,三棱柱的上底面ΔA1B1C1的内切圆的圆心为O1,该圆与边B【详解】如图,设三棱柱为ABC-A1B1C所以底面ΔA1B1C1为斜边是A1C1则圆O1的半径为O设球心为O,则由球的几何知识得ΔOO1M所以OM=2即球O的半径为25所以球O的体积为43故选A.【点睛】本题考查与球有关的组合体的问题,解答本题的关键有两个:(1)构造以球半径R、球心到小圆圆心的距离d和小圆半径r为三边的直角三角形,并在此三角形内求出球的半径,这是解决与球有关的问题时常用的方法.(2)若直角三角形的两直角边为a,b,斜边为c,则该直角三角形内切圆的半径r=a+b-c7、B【解析】
根据在上投影为,以及,可得;再对所求模长进行平方运算,可将问题转化为模长和夹角运算,代入即可求得.【详解】在上投影为,即又本题正确选项:【点睛】本题考查向量模长的运算,对于含加减法运算的向量模长的求解,通常先求解模长的平方,再开平方求得结果;解题关键是需要通过夹角取值范围的分析,得到的最小值.8、D【解析】,则故选D.9、B【解析】
过点的直线与圆:相切于点,可得.因此,即可得出.【详解】由圆:配方为,,半径.∵过点的直线与圆:相切于点,∴;∴;故选:B.【点睛】本小题主要考查向量数量积的计算,考查圆的方程,属于基础题.10、D【解析】
首先由函数为偶函数,可得函数在内单调递增,再由,即可判定大小【详解】因为偶函数在减,所以在上增,,,,∴.故选:D【点睛】本题考查函数的奇偶性和单调性,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,属于中档题.11、C【解析】
两函数的图象如图所示,则图中|MN|最小,设M(x1,y1),N(x2,y2),则x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故选C.12、B【解析】
2,0,1,9,10按照任意次序排成一行,得所有不以0开头的排列数共个,其中含有2个10的排列数共个,所以产生的不同的6位数的个数为.故选B.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】
作出可行域,平移基准直线到处,求得的最小值.【详解】画出可行域如下图所示,由图可知平移基准直线到处时,取得最小值为.故答案为:【点睛】本小题主要考查线性规划求最值,考查数形结合的数学思想方法,属于基础题.14、【解析】
根据补集的定义求解即可.【详解】解:.故答案为.【点睛】本题主要考查了补集的运算,属于基础题.15、【解析】
从7人中选出2人则总数有,符合条件数有,后者除以前者即得结果【详解】从7人中随机选出2人的总数有,则记选出的名同学中恰好名男生名女生的概率为事件,∴故答案为:【点睛】组合数与概率的基本运用,熟悉组合数公式16、【解析】
由题意可得等腰三角形的两条相等的边,设,由题可得的长,在三角形中,三角形中由余弦定理可得的值相等,可得的关系,从而求出椭圆的离心率【详解】如图,若为等腰三角形,则|BF1|=|AB|.设|BF2|=t,则|BF1|=2a−t,所以|AB|=a+t=|BF1|=2a−t,解得a=2t,即|AB|=|BF1|=3t,|AF1|=2t,设∠BAO=θ,则∠BAF1=2θ,所以Г的离心率e=,结合余弦定理,易得在中,,所以,即e==,故答案为:.【点睛】此题考查椭圆的定义及余弦定理的简单应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】
(1)分别取,的中点,,连接,,,,,要证明平面,只需证明面∥面即可.(2)以点为原点,以为轴,以为轴,以为轴,建立空间直角坐标系,分别计算面的法向量,面的法向量可取,并判断二面角为锐角,再利用计算即可.【详解】(1)证明:分别取,的中点,,连接,,,,.由平面平面,且交于,平面,有平面,由平面平面,且交于,平面,有平面,所以∥,又平面,平面,所以∥平面,由,有,∥,又平面,平面,所以∥平面,由∥平面,∥平面,,所以平面∥平面,所以∥平面(2)以点为原点,以为轴,以为轴,以为轴,建立如图所示空间直角坐标系由面,所以面的法向量可取,点,点,点,,,设面的法向量,所以,取,二面角的平面角为,则为锐角.所以【点睛】本题考查由面面平行证明线面平行以及向量法求二面角的余弦值,考查学生的运算能力,在做此类题时,一定要准确写出点的坐标.18、(1)an=2n【解析】
(1)先设出数列的公差为d,结合题中条件,求出首项和公差,即可得出结果.(2)利用裂项相消法求出数列的和.【详解】解:(1)设公差为d的等差数列{an}且a1+a则有:a1解得:a1=3,所以:a(2)由于:an所以:Sn则:1S则:Tn=1【点睛】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转化能力,属于基础题型.19、(Ⅰ)见解析(Ⅱ).【解析】
(I)取的中点,连接,通过证明平面得出;(II)以为原点建立坐标系,求出平面的法向量,通过计算与的夹角得出与平面所成角.【详解】(I)证明:取AC的中点M,连接PM,BM,∵AB=BC,PA=PC,∴AC⊥BM,AC⊥PM,又BM∩PM=M,∴AC⊥平面PBM,∵BP⊂平面PBM,∴AC⊥BP.(II)解:∵底面ABCD是梯形.BC∥AD,AB=BC=CD=1,AD=2,∴∠ABC=120°,∵AB=BC=1,∴AC,BM,∴AC⊥CD,又AC⊥BM,∴BM∥CD.∵PA=PC,CM,∴PM,∵PB,∴cos∠BMP,∴∠PMB=120°,以M为原点,以MB,MC的方向为x轴,y轴的正方向,以平面ABCD在M处的垂线为z轴建立坐标系M﹣xyz,如图所示:则A(0,,0),C(0,,0),P(,0,),D(﹣1,,0),∴(﹣1,,0),(0,,0),(,,),设平面ACP的法向量为(x,y,z),则,即,令x得(,0,1),∴cos,,∴直线AD与平面APC所成角的正弦值为|cos,|.【点睛】本题考查异面直线垂直的证明,考查直线与平面所成角的正弦值的求法,解题时要认真审题,注意向量法的合理使用,难度一般.20、(1)(2)证明见解析【解析】
(1)先求得导函数,根据两个极值点可知有两个不等实根,构造函数,求得;讨论和两种情况,即可确定零点的情况,即可由零点的情况确定的取值范围;(2)根据极值点定义可知,,代入不等式化简变形后可知只需证明;构造函数,并求得,进而判断的单调区间,由题意可知,并设,构造函数,并求得,即可判断在内的单调性和最值,进而可得,即可由函数性质得,进而由单调性证明,即证明,从而证明原不等式成立.【详解】(1)函数则,因为存在两个极值点,,所以有两个不等实根.设,所以.①当时,,所以在上单调递增,至多有一个零点,不符合题意.②当时,令得,0减极小值增所以,即.又因为,,所以在区间和上各有一个零点,符合题意,综上,实数的取值范围为.(2)证明:由题意知,,所以,.要证明,只需证明,只需证明.因为,,所以.设,则,所以在上是增函数,在上是减函数.因为,不妨设,设,,则,当时,,,所以,所以在上是增函数,所以,所以,即.因为,所以,所以.因为,,且在上是减函数,所以,即,所以原命题成立,得证.【点睛】本题考查了利用导数研究函数的极值点,由导数证明不等式,构造函数法的综合应用,极值点偏移证明不等式成立的应用,是高考的常考点和热点,属于难题.21、(1)(2)【解析】
(1)利用正弦,余弦定理对式子化简求解即可;(2)利用余弦定理以及三角形的面积,求解三角形的周长即可.【详解】(1),由正弦定理可得:,即:,由余弦定理得.(2)∵,所以,,又,且,,的周长为【点睛】本题考查正弦定理以及余弦定理的应用,三角形的面积公式,也考查计算能力,属于基础题.22、(1)证明见解析(2)【解析】
(1)要证明平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州国企招聘:2026贵州兴黔人才资源有限责任公司招聘备考题库必考题
- 2026年吉安市白鹭洲中学面向高校招聘教师15人考试备考题库必考题
- 综合楼室外幕墙施工方案培训资料
- 湛江市辅警考试题库2025
- 第一单元 中国共产党的领导 单元测试(含解析)-2025-2026学年高中政治统编版必修三政治与法治
- 2026教育部海洋微生物资源库(中国海洋大学)工程技术人员招聘备考题库及参考答案详解1套
- 2026中共防城区委员会政法委员会招聘防城区专职网格员8人备考题库(广西)及一套参考答案详解
- 文旅融合项目负责人履职清单
- 关于发布安全生产管理制度及安全操作规程的通知
- 冷链物流信息化管理系统2025年升级技术创新与冷链追溯可行性研究报告
- 02-输电线路各阶段设计深度要求
- 《认识时钟》大班数学教案
- 新疆维吾尔自治区伊犁哈萨克自治州2023-2024学年八年级下学期期中数学试题
- T-CI 178-2023 高大边坡稳定安全智能监测预警技术规范
- THHPA 001-2024 盆底康复管理质量评价指标体系
- 伤口的美容缝合减少瘢痕的形成
- MSOP(测量标准作业规范)测量SOP
- 颅鼻眶沟通恶性肿瘤的治疗及护理
- 人教版四年级《上册语文》期末试卷(附答案)
- 四川山体滑坡地质勘察报告
- 青岛啤酒微观运营
评论
0/150
提交评论