2026届云南省玉溪市元江县第一中学数学高一上期末学业水平测试试题含解析_第1页
2026届云南省玉溪市元江县第一中学数学高一上期末学业水平测试试题含解析_第2页
2026届云南省玉溪市元江县第一中学数学高一上期末学业水平测试试题含解析_第3页
2026届云南省玉溪市元江县第一中学数学高一上期末学业水平测试试题含解析_第4页
2026届云南省玉溪市元江县第一中学数学高一上期末学业水平测试试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届云南省玉溪市元江县第一中学数学高一上期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在正方体中,异面直线与所成的角为()A.90° B.60°C.45° D.30°2.过点A(3,4)且与直线l:x﹣2y﹣1=0垂直的直线的方程是A.2x+y﹣10=0 B.x+2y﹣11=0C.x﹣2y+5=0 D.x﹣2y﹣5=03.已知是两条直线,是两个平面,则下列命题中正确的是A. B.C. D.4.设,且,则()A. B.C. D.5.已知全集,集合,,则∁U(A∪B)=A. B.C. D.6.计算(16A.-1 B.1C.-3 D.37.已知角的顶点与平面直角坐标系的原点重合,始边与x轴的正半轴重合,终边经过点,若,则的值为()A. B.C. D.8.化简A. B.C.1 D.9.已知指数函数是减函数,若,,,则m,n,p的大小关系是()A. B.C. D.10.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是A.①和② B.②和③C.③和④ D.②和④二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,现有如下几个命题:①该函数为偶函数;

②是该函数的一个单调递增区间;③该函数的最小正周期为;④该函数的图像关于点对称;⑤该函数值域为.其中正确命题的编号为______12.已知,则__________.13.如图,、、、分别是三棱柱的顶点或所在棱的中点,则表示直线与是异面直线的图形有______.14.已知定义在上的奇函数,当时,,当时,________15.不等式的解集是________.16.下列函数图象与x轴都有交点,其中不能用二分法求其零点的是___________.(写出所有符合条件的序号)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,其中,且.(1)若函数的图像过点,且函数只有一个零点,求函数的解析式;(2)在(1)的条件下,若,函数在区间上单调递增,求实数的取值范围.18.已知函数的定义域为集合,关于的不等式的解集为,若,求实数的取值范围19.计算下列各式的值:(1)(2)20.黄山市某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量(单位:千克)与施用肥料(单位:千克)满足关系:.肥料成本投入为元,其它成本投入(如培育管理,施肥等人工费)元.已知这种水果的市场售价为15元/千克,且销路畅通供不应求,记该水果树的单株利润为(单位:元).(1)求的函数关系式;(2)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?21.已知全集,若集合,.(1)若,求;(2)若,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】连接,可证明,然后可得即为异面直线与所成的角,然后可求出答案.【详解】连接,因为是正方体,所以和平行且相等所以四边形是平行四边形,所以,所以为异面直线与所成的角.因为是等边三角形,所以故选:B2、A【解析】依题意,设所求直线的一般式方程为,把点坐标代入求解,从而求出一般式方程.【详解】设经过点且垂直于直线的直线的一般式方程为,把点坐标代入可得:,解得,所求直线方程为:.故选:A【点睛】本题考查了直线的方程、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于基础题.3、D【解析】A不正确,因为n可能在平面内;B两条直线可以不平行;C当m在平面内时,n此时也可以在平面内.故选项不对D正确,垂直于同一条直线的两个平面是平行的故答案为D4、D【解析】根据同角三角函数的基本关系,两角和的正弦公式,即可得到答案;详解】,,,,故选:D5、C【解析】,,,∁U(A∪B)=故答案为C.6、B【解析】原式=故选B7、C【解析】根据终边经过点,且,利用三角函数的定义求解.【详解】因为角终边经过点,且,所以,解得,故选:C8、D【解析】先考虑分母化简,利用降次公式,正切的两角和与差公式打开,整理,可得答案【详解】化简分母得.故原式等于.故选D【点睛】本题主要考查了两角和与差公式以及倍角公式.属于基础题9、B【解析】由已知可知,再利用指对幂函数的性质,比较m,n,p与0,1的大小,即可得解.【详解】由指数函数是减函数,可知,结合幂函数的性质可知,即结合指数函数的性质可知,即结合对数函数的性质可知,即,故选:B.【点睛】方法点睛:本题考查比较大小,比较指数式和对数式的大小,可以利用函数的单调性,引入中间量;有时也可用数形结合的方法,解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.10、D【解析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择.【详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④.故选D【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、②③【解析】由于为非奇非偶函数,①错误.,此时,其在上为增函数,②正确.由于,所以函数最小正周期为,③正确.由于,故④正确.当时,,故⑤错误.综上所述,正确的编号为②③.12、3【解析】由同角三角函数商数关系及已知等式可得,应用诱导公式有,即可求值.【详解】由题设,,可得,∴.故答案为:313、②④【解析】图①中,直线,图②中面,图③中,图④中,面【详解】解:根据题意,在①中,且,则四边形是平行四边形,有,不是异面直线;图②中,、、三点共面,但面,因此直线与异面;在③中,、分别是所在棱的中点,所以且,故,必相交,不是异面直线;图④中,、、共面,但面,与异面所以图②④中与异面故答案为:②④.14、【解析】设,则,代入解析式得;再由定义在上的奇函数,即可求得答案.【详解】不妨设,则,所以,又因为定义在上的奇函数,所以,所以,即.故答案为:.15、【解析】由题意,,根据一元二次不等式的解法即可求出结果.【详解】由题意,或,故不等式的解集为.故答案为:.【点睛】本题主要考查了一元二次不等式的解法,属于基础题.16、(1)(3)【解析】根据二分法所求零点的特点,结合图象可确定结果.【详解】用二分法只能求“变号零点”,(1),(3)中的函数零点不是“变号零点”,故不能用二分法求故答案为:(1)(3)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】(1)因为,根据函数的图像过点,且函数只有一个零点,联立方程即可求得答案;(2)因为,由(1)可知:,可得,根据函数在区间上单调递增,即可求得实数的取值范围.【详解】(1)根据函数的图像过点,且函数只有一个零点可得,整理可得,消去得,解得或当时,,当时,,综上所述,函数的解析式为:或(2)当,由(1)可知:要使函数在区间上单调递增则须满足解得,实数的取值范围为.【点睛】本题考查了求解二次函数解析式和已知复合函数单调区间求参数范围.掌握复合函数单调性同增异减是解题关键,考查了分析能力和计算能力,属于中等题.18、.【解析】对数真数大于零,所以,解得.为增函数,所以.由于是的子集,所以.试题解析:要使有意义,则,解得,即由,解得,即∴解得故实数的取值范围是考点:分式不等式,子集的概念.【方法点晴】注意一元二次方程、二次函数、二次不等式的联系,解二次不等式应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力;当时,需要计算相应二次方程的根,其解集是用根表示,对于含参数的二次不等式,需要针对开口方向、判别式的符号、根的大小分类讨论.解决恒成立问题一定要清楚选谁为主元,谁是参数.一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.分式不等式转化为一元二次不等式来求解.19、(1)(2)【解析】(1)根据指数的运算性质进行求解即可;(2)根据对数的运算性质进行求解即可.【小问1详解】【小问2详解】20、(1)f(2)当施用肥料为5千克时,该水果树的单株利润最大,最大利润是750元【解析】(1)用销售收入减去成本求得的函数关系式.(2)结合二次函数的性质、基本不等式来求得最大利润以及此时对应的施肥量.小问1详解】由已知得:,故fx【小问2详解】若,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论