版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届遂溪县第一中学高二数学第一学期期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.曲线与曲线的()A.实轴长相等 B.虚轴长相等C.焦距相等 D.渐进线相同2.棱长为1的正四面体的表面积是()A. B.C. D.3.如图,已知双曲线的左右焦点分别为、,,是双曲线右支上的一点,,直线与轴交于点,的内切圆半径为,则双曲线的离心率是()A. B.C. D.4.某次生物实验6个小组的耗材质量(单位:千克)分别为1.71,1.58,1.63,1.43,1.85,1.67,则这组数据的中位数是()A.1.63 B.1.67C.1.64 D.1.655.将直线2x-y+λ=0沿x轴向左平移1个单位,所得直线与圆x2+y2+2x-4y=0相切,则实数λ值为()A.-3或7 B.-2或8C0或10 D.1或116.已知,,若,则()A.9 B.6C.5 D.37.过双曲线的左焦点作x轴的垂线交曲线C于点P,为右焦点,若,则双曲线的离心率为()A. B.C. D.8.《莱茵德纸草书》(RhindPapyrus)是世界上最古老的数学著作之一.书中有这样一道题目:把93个面包分给5个人,使每个人所得面包个数成等比数列,且使较小的两份之和等于中间一份的四分之三,则最大的一份是()个A.12 B.24C.36 D.489.从某个角度观察篮球(如图甲),可以得到一个对称的平面图形,如图乙所示,篮球的外轮廓为圆,将篮球表面的粘合线视为坐标轴和双曲线,若坐标轴和双曲线与圆的交点将圆的周长八等分,且,则该双曲线的离心率为()A. B.C.2 D.10.已知,,,则点C到直线AB的距离为()A.3 B.C. D.11.已知抛物线y2=4x的焦点为F,定点,M为抛物线上一点,则|MA|+|MF|的最小值为()A.3 B.4C.5 D.612.已知函数与,则它们的图象交点个数为()A.0 B.1C.2 D.不确定二、填空题:本题共4小题,每小题5分,共20分。13.函数在处的切线与平行,则________.14.在梯形中,,,.将梯形绕所在的直线旋转一周而形成的曲面所围成的几何体的体积为______.15.不透明袋中装有完全相同,标号分别为1,2,3,…,8的八张卡片.从中随机取出3张.设X为这3张卡片的标号相邻的组数(例如:若取出卡片的标号为3,4,5,则有两组相邻的标号3、4和4、5,此时X的值是2).则随机变量X的数学期望______16.已知曲线在点处的切线的斜率为,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知圆,点P在圆上,过点P作x轴的垂线,垂足为是的中点,当P在圆M上运动时N形成的轨迹为C(1)求C的轨迹方程;(2)若点,试问在x轴上是否存在点M,使得过点M的动直线交C于两点时,恒有?若存在,求出点M的坐标;若不存在,请说明理由18.(12分)已知椭圆的左右焦点分别为,,点在椭圆上,与轴垂直,且(1)求椭圆的方程;(2)若点在椭圆上,且,求的面积19.(12分)解下列不等式:(1);(2).20.(12分)已知等比数列{}的各项均为正数,,,成等差数列,,数列{}的前n项和,且.(1)求{}和{}的通项公式;(2)设,记数列{}的前n项和为.求证:.21.(12分)设椭圆E:(a,b>0)过M(2,),N(,1)两点,O为坐标原点,(1)求椭圆E的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB|的取值范围,若不存在说明理由.22.(10分)如图①,等腰梯形中,,分别为的中点,,现将四边形沿折起,使平面平面,得到如图②所示的多面体,在图②中:(1)证明:平面平面;(2)求四棱锥的体积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】将曲线化为标准方程后即可求解.【详解】化为标准方程为,由于,则两曲线实轴长、虚轴长、焦距均不相等,而渐近线方程同为.故选:2、D【解析】采用数形结合,根据边长,结合正四面体的概念,计算出正三角形的面积,可得结果【详解】如图由正四面体的概念可知,其四个面均是全等的等边三角形,由其棱长为1,所以,所以可知:正四面体的表面积为,故选:D3、D【解析】根据给定条件结合直角三角形内切圆半径与边长的关系求出双曲线实半轴长a,再利用离心率公式计算作答.【详解】依题意,,的内切圆半径,由直角三角形内切圆性质知:,由双曲线对称性知,,于是得,即,又双曲线半焦距c=2,所以双曲线的离心率.故选:D【点睛】结论点睛:二直角边长为a,b,斜边长为c的直角三角形内切圆半径.4、D【解析】将已有数据从小到大排序,根据中位数的定义确定该组数据的中位数.【详解】由题设,将数据从小到大排序可得:,∴中位数为.故选:D.5、A【解析】根据直线平移的规律,由直线2x﹣y+λ=0沿x轴向左平移1个单位得到平移后直线的方程,然后因为此直线与圆相切得到圆心到直线的距离等于半径,利用点到直线的距离公式列出关于λ的方程,求出方程的解即可得到λ的值解:把圆的方程化为标准式方程得(x+1)2+(y﹣2)2=5,圆心坐标为(﹣1,2),半径为,直线2x﹣y+λ=0沿x轴向左平移1个单位后所得的直线方程为2(x+1)﹣y+λ=0,因为该直线与圆相切,则圆心(﹣1,2)到直线的距离d==r=,化简得|λ﹣2|=5,即λ﹣2=5或λ﹣2=﹣5,解得λ=﹣3或7故选A考点:直线与圆的位置关系6、D【解析】根据空间向量垂直的坐标表示即可求解.【详解】.故选:D.7、D【解析】由题知是等腰直角三角形,,又根据通径的结论知,结合可列出关于的二次齐次式,即可求解离心率.【详解】由题知是等腰直角三角形,且,,又,,即,,,即,解得,,.故选:D.8、D【解析】设等比数列的首项为,公比,根据题意,由求解.【详解】设等比数列的首项为,公比,由题意得:,即,解得,所以,故选:D9、B【解析】设出双曲线方程,把双曲线上的点的坐标表示出来并代入到方程中,找到的关系即可求解.【详解】以O为原点,AD所在直线为x轴建系,不妨设,则该双曲线过点且,将点代入方程,故离心率为,故选:B【点睛】本题考查已知点在双曲线上求双曲线离心率的方法,属于基础题目10、D【解析】应用空间向量的坐标运算求在上投影长及的模长,再应用勾股定理求点C到直线AB的距离.【详解】因为,,所以设点C到直线AB的距离为d,则故选:D11、B【解析】作出图象,过点M作准线的垂线,垂足为H,结合图形可得当且仅当三点M,A,H共线时|MA|+|MH|最小,求解即可【详解】过点M作准线的垂线,垂足为H,由抛物线的定义可知|MF|=|MH|,则问题转化为|MA|+|MH|的最小值,结合图形可得当且仅当三点M,A,H共线时|MA|+|MH|最小,其最小值为.故选:B12、B【解析】令,判断的单调性并计算的极值,根据极值与0的大小关系判断的零点个数,得出答案.【详解】令,则,由,得,∴当时,,当时,.∴当时,取得最小值,∴只有一个零点,即与的图象只有1个交点.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】由得出的值.【详解】因为函数在处的切线与平行所以,故故答案为:214、##【解析】画出几何体的直观图,利用已知条件,求解几何体的体积即可【详解】梯形ABCD:由题意可知空间几何体的直观图如图:旋转体是底面半径为1,高为2的圆柱,挖去一个相同底面高为1的圆锥,几何体的体积为:故答案为:15、##【解析】设为这3张卡片的标号相邻的组数,则的可能取值为0,1,2,利用列举法分别求出相应的概率,由此能求出随机变量的数学期望【详解】解:不透明袋中装有完全相同,标号分别为1,2,3,,8的八张卡片从中随机取出3张,共有种,设为这3张卡片的标号相邻的组数,则的可能取值为0,1,2,的情况有:,2,,,3,,,4,,,5,,,6,,,7,,共6个,,的情况有:取,另外一个数有5种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有5种取法的情况一共有:,,,随机变量的数学期望:故答案为:16、【解析】对求导,根据题设有且,即可得目标式的值.【详解】由题设,且定义域为,则,所以,整理得,又,所以,两边取对数有,得:,即.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)不存在,理由见解析.【解析】(1)设,根据中点坐标公式用N的坐标表示P的坐标,将P的坐标代入圆M的方程化简即可得N的轨迹方程;(2)假设存在,设M为(m,0),设直线l斜率为k,表示其方程,l方程和椭圆方程联立,根据韦达定理得根与系数关系,由,得,代入根与系数的关系求k与m关系即可判断.【小问1详解】设,因为N为的中点,,又P点在圆上,,即C轨迹方程为;【小问2详解】不存在满足条件的点M,理由如下:假设存在满足条件的点M,设点M的坐标为,直线的斜率为k,则直线的方程为,由消去y并整理,得,设,则由,得,即,将代入上式并化简,得将式代入上式,有,解得,而,求得点M在椭圆外,若与椭圆无交点不满足条件,所以不存在这样的点M【点睛】本题关键是由得,将几何关系转化为代数关系进行计算.18、(1);(2)【解析】(1)由椭圆的性质求出,进而得出方程;(2)由,结合余弦定理求出,再由面积公式得出三角形的面积.【详解】解:(1),与轴垂直,,∴∴椭圆的方程为(2)由(1)知,∵,∴∴,∴的面积为【点睛】关键点睛:解决问题二的关键在于利用余弦定理结合完全平方和公式求出,进而得出面积.19、(1)(2)【解析】(1)利用十字相乘解题即可(2)利用分子分母同号为正,异号为负思想,注意讨论分母不为0【小问1详解】由题,即,解得或,即;【小问2详解】由题,解得或,即20、(1)(2)证明见解析【解析】设等比数列的公比为,由,,成等差数列,解得.由,利用通项公式解得,可得.由数列的前项和,且,时,,化简整理即可得出;(2),利用裂项求和方法、数列的单调性即可证明结论【小问1详解】设等比数列的公比为,,,成等差数列,,即,化为:,解得,,即,解得,数列的前项和,且,时,,化为:,,数列是每项都为1的常数列,,化为【小问2详解】证明:,数列的前项和为,21、(1);(2)存在,,.【解析】(1)根据椭圆E:(a,b>0)过M(2,),N(,1)两点,直接代入方程解方程组即可.(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,当切线斜率存在时,设该圆的切线方程为,联立,根据,结合韦达定理运算,同时满足,则存在,否则不存在,当切线斜率不存在时,验证即可;在该圆的方程存在时,利用弦长公式结合韦达定理得到求解.【详解】(1)因为椭圆E:(a,b>0)过M(2,),N(,1)两点,所以,解得,所以,所以椭圆E的方程为.(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为,联立得,则△=,即,,,要使,需使,即,所以,所以,又,所以,所以,即或,因为直线为圆心在原点的圆的一条切线,所以圆的半径为,,所以,则所求的圆为,此时圆的切线都满足或,而当切线的斜率不存在时切线为与椭圆的两个交点为或满足,综上,存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.因为,所以,,①当时,,因为,所以,所以,所以,当且仅当时取”=”.②当时,.③当AB的斜率不存在时,两个交点为或,所以此时,综上,|AB|的取值范围为,即:【点睛】思路点睛:1、解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单2、设直线与椭圆的交点坐标为A(x1,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全国青少年禁毒知识竞赛题库与答案(中学组)
- 公共安全监管人员安全知识测试题库及答案
- 营销调研考试题及答案
- LG(中国)招聘面试题及答案
- 大学语文考研试题及答案
- 中建东孚2026届校园招聘考试备考题库附答案
- 关于南昌市湾里管理局2025年度公开选调事业单位工作人员的【24人】考试备考题库附答案
- 四川文理学院2025年下半年公开选调工作人员(2人)考试备考题库附答案
- 广发证券分支机构“星·起点”培训生2026届校招参考题库附答案
- 昆仑集团2026届大学毕业生招聘参考题库必考题
- 传染病学-病毒性肝炎
- 电气试验报告模板
- 重庆市沙坪坝小学小学语文五年级上册期末试卷
- 陶瓷岩板应用技术规程
- 中药制剂技术中职PPT完整全套教学课件
- 龙虎山正一日诵早晚课
- WORD版A4横版密封条打印模板(可编辑)
- 1比较思想政治教育
- 艺术课程标准(2022年版)
- JJF 1654-2017平板电泳仪校准规范
- 上海市工业用水技术中心-工业用水及废水处理课件
评论
0/150
提交评论