版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省鞍山市2026届高二数学第一学期期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.正方体的棱长为2,E,F,G分别为,AB,的中点,则直线ED与FG所成角的余弦值为()A. B.C. D.2.若等比数列满足,,则数列的公比为()A. B.C. D.3.设的内角A,B,C的对边分别为a,b,c,已知,,,则b等于()A. B.2C. D.44.已知椭圆:的左、右焦点为,,上顶点为P,则()A.为锐角三角形 B.为钝角三角形C.为直角三角形 D.,,三点构不成三角形5.正四棱锥中,,则直线与平面所成角的正弦值为A. B.C. D.6.已知定义在上的函数的导函数为,且恒有,则下列不等式一定成立的是()A. B.C. D.7.等比数列的第4项与第6项分别为12和48,则公比的值为()A. B.2C.或2 D.或8.从集合{2,3,4,5}中随机抽取一个数m,从集合{1,3,5}中随机抽取一个数n,则向量=(m,n)与向量=(1,-1)垂直的概率为()A. B.C. D.9.原点到直线的距离的最大值为()A. B.C. D.10.某三棱锥的三视图如图所示,则该三棱锥内切球的表面积为A.B.C.D.11.在等差数列中,,表示数列的前项和,则()A.43 B.44C.45 D.4612.若某群体中的成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,则不用现金支付的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.曲线在处的切线方程为______.14.命题“矩形的对角线相等”的否命题是________.15.已知函数.(1)当时,求曲线在点处的切线方程;(2)求的单调区间;16.已知复数对应的点在复平面第一象限内,甲、乙、丙三人对复数的陈述如下为虚数单位:甲:;乙:;丙:,在甲、乙、丙三人陈述中,有且只有两个人的陈述正确,则复数______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率,若不能,说明理由18.(12分)已知抛物线的焦点为F,倾斜角为45°的直线m过点F,若此抛物线上存在3个不同的点到m的距离为,求此抛物线的准线方程19.(12分)已知函数(1)当时,求在区间上的最值;(2)若在定义域内有两个零点,求的取值范围20.(12分)如图,已知等腰梯形,,为等腰直角三角形,,把沿折起(1)当时,求证:;(2)当平面平面时,求平面与平面所成二面角的平面角的正弦值21.(12分)已知数列是递增的等差数列,,若成等比数列.(1)求数列的通项公式;(2)若,数列的前项和,求.22.(10分)已知椭圆()与椭圆的焦点相同,且椭圆C过点(1)求椭圆C的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点A,B,且,(O为坐标原点),若存在,求出该圆的方程;若不存在,说明理由;(3)P是椭圆C上异于上顶点,下顶点的任一点,直线,,分别交x轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】建立空间直角坐标系,利用空间向量坐标运算即可求解.【详解】如图所示建立适当空间直角坐标系,故选:B2、D【解析】设等比数列的公比为,然后由已知条件列方程组求解即可【详解】设等比数列的公比为,因为,,所以,所以,解得,故选:D3、A【解析】由正弦定理求解即可.【详解】因为,所以故选:A4、A【解析】根据题意求得,要判断的形状,只需要看是什么角即可,利用余弦定理判断,从而可得结论.【详解】解:由椭圆:,得,则,则,所以且为锐角,因为,所以锐角,所以为锐角三角形.故选:A.5、C【解析】建立合适的空间直角坐标系,求出和平面的法向量,直线与平面所成角的正弦值即为与的夹角的余弦值的绝对值,利用夹角公式求出即可.【详解】建立如图所示的空间直角坐标系.有图知,由题得、、、.,,.设平面的一个法向量,则,,令,得,,.设直线与平面所成的角为,则.故选:C.【点睛】本题考查线面角的求解,利用向量法可简化分析过程,直接用计算的方式解决问题,是基础题.6、D【解析】构造函数,用导数判断函数单调性,即可求解.【详解】根据题意,令,其中,则,∵,∴,∴在上为单调递减函数,∴,即,,则错误;,即,则错误;,即,则错误;,即,则正确;故选:.7、C【解析】根据等比数列的通项公式计算可得;详解】解:依题意、,所以,即,所以;故选:C8、A【解析】根据分步计数乘法原理求得所有的)共有12个,满足两个向量垂直的共有2个,利用古典概型公式可得结果.【详解】集合{2,3,4,5}中随机抽取一个数,有4种方法;从集合{1,3,5}中随机抽取一个数,有3种方法,所以,所有的共有个,由向量与向量垂直,可得,即,故满足向量与向量垂直的共有2个:,所以向量与向量垂直的概率为,故选A.【点睛】本题主要考查分步计数乘法原理的应用、向量垂直的性质以及古典概型概率公式的应用,属于中档题.在解古典概型概率题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.9、C【解析】求出直线过的定点,当时,原点到直线距离最大,则可求出原点到直线距离的最大值;【详解】因为可化为,所以直线过直线与直线交点,联立可得所以直线过定点,当时,原点到直线距离最大,最大距离即为,此时最大值为,故选:C.10、A【解析】由三视图可知该几何体是一个三棱锥,根据等积法求出几何体内切球的半径,再计算内切球的表面积【详解】解:由三视图知该几何体是一个三棱锥,放入棱长为2的正方体中,如图所示:设三棱锥内切球的半径为,则由等体积法得,解得,所以该三棱锥内切球的表面积为故选:A【点睛】本题考查了由三视图求三棱锥内切球表面积的应用问题,属于中档题11、C【解析】根据等差数列的性质,求得,结合等差数列的求和公式,即可求解.【详解】由等差数列中,满足,根据等差数列的性质,可得,所以,则.故选:C.12、A【解析】利用对立事件概率公式可求得所求事件的概率.【详解】由对立事件的概率公式可知,该群体中的成员不用现金支付的概率为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求出函数的导函数,然后结合导数的几何意义求解即可.【详解】解:由,得,则,即当时,,所以切线方程为:,故答案为:.【点睛】本题考查了曲线在某点处的切线方程的求法,属基础题.14、“若一个四边形不是矩形,则它的对角线不相等”【解析】否命题是条件否定,结论否定,即可得解.【详解】否命题是条件否定,结论否定,所以命题“矩形的对角线相等”的否命题是“若一个四边形不是矩形,则它的对角线不相等”故答案为:“若一个四边形不是矩形,则它的对角线不相等”15、(1)(2)详见解析【解析】(1)分别求得和,从而得到切线方程;(2)求导后,令求得两根,分别在、和三种情况下根据导函数的正负得到函数的单调区间.【详解】(1),,,,又,在处的切线方程为.(2),令,解得:,.①当时,若和时,;若时,;的单调递增区间为,;单调递减区间为;②当时,在上恒成立,的单调递增区间为,无单调递减区间;③当时,若和时,;若时,;的单调递增区间为,;单调递减区间为;综上所述:当时,的单调递增区间为,;单调递减区间为;当时,的单调递增区间为,无单调递减区间;当时,的单调递增区间为,;单调递减区间为.【点睛】本题考查利用导数的几何意义求解曲线在某一点处的切线方程、利用导数讨论含参数函数的单调区间的问题,属于常考题型.16、##【解析】设,则,然后分别求出甲,乙,丙对应的结论,先假设甲正确,则得出乙错误,丙正确,由此即可求解【详解】解:设,则,甲:由可得,则,乙:由可得:,丙:由可得,即,所以,若,则,则不成立,,则,解得或,所以甲,丙正确,乙错误,此时或,又复数对应的点在复平面第一象限内,所以,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)能为平行四边形;斜率为4-或4+【解析】(1)设两点坐标,由点差法证明(2)求出两点坐标,由平行四边形的几何性质判断【小问1详解】设的斜率为,,两式相减可得,即故【小问2详解】由(1)得的直线为,直线方程为联立,解得联立解得若四边形OAPB为平行四边形,则对角线互相平分为中点,解得,经检验,均符合题意故四边形OAPB能为平行四边形,此时斜率为4-或4+18、【解析】设出直线m的方程,利用方程组联立、一元二次方程根的判别式求出与直线m平行的抛物线的切线方程,结合平行线间距离公式进行求解即可.【详解】抛物线的焦点坐标为:,设直线m为,设为与抛物线相切,联立直线与抛物线方程,化简整理可得,,则,解得,且,故两平行线间的距离,解得,故所求的准线方程为19、(1),;(2).【解析】(1)当时,求出导函数,求出函数得单调区间,即可求出在区间上的最值;(2)由,分离参数得,根据函数得单调性作图,结合图像即可得出答案.【详解】解:(1)当时,,,∴在单调递减,在单调递增,,,∴,(2),则,∴在单调递增,在单调递减,,当时,,当时,,作出函数和得图像,∴由图象可得,.20、(1)证明见解析(2)【解析】(1)取的中点E,连,证明四边形为平行四边形,从而可得为等边三角形,四边形为菱形,从而可证,,即可得平面,再根据线面垂直的性质即可得证;(2)取的中点M,连接,以B为空间坐标原点,向量分别为x,y,z轴建立空间直角坐标系,利用向量法即可得出答案.【小问1详解】解:取的中点E,连,∵,∴,∵,∴四边形为平行四边形,∵,∴,∵,∴为等边三角形,四边形为菱形,∴,,∴∴,∵,,,平面,,∴平面,∵平面,∴;【小问2详解】解:取的中点M,连接,由(1)知,,∵平面平面,,∴平面,以B为空间坐标原点,向量分别为x,y,z轴建立空间直角坐标系,则,设平面的法向量为,由,,有,取,可得,设平面的法向量为,由,,有,取,有,有,故平面与平面所成二面角的正弦值为21、(1);(2).【解析】(1)设等差数列的公差为,根据题意列出方程组,求得的值,即可求解;(2)由(1)求得,结合“裂项法”即可求解.【详解】(1)设等差数列的公差为,因为,若成等比数列,可得,解得,所以数列的通项公式为.(2)由(1)可得,所以.【点睛】关于数列的裂项法求和的基本策略:1、基本步骤:裂项:观察数列的通项,将通项拆成两项之差的形式;累加:将数列裂项后的各项相加;消项:将中间可以消去的项相互抵消,将剩余的有限项相加,得到数列的前项和.2、消项的规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.22、(1);(2)存在,;(3)证明见解析,定值2【解析】(1)根据已知条件,用待定系数解方程组即可得到C的方程;(2)设出AB的方程,与椭圆方程联立,得到根与系数关系,代入由确定方程内即可得到结果;(3)设P点坐标,求出M和N坐标,设出圆G的圆心坐标,求得圆的半径,由垂径定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全法律法规真题及答案解析
- 2025年食品安全管理员考试试题库卷及答案
- 2025年嵌入式系统考题及答案条件
- 高频北美统计学面试试题及答案
- ABB(中国)校招面试题及答案
- 船厂入职考试题目及答案
- 北京市通州区中西医结合医院2026年毕业生招聘参考题库必考题
- 南昌大学附属口腔医院2026年高层次人才招聘(3)备考题库附答案
- 四川能投高县综合能源有限公司2025年招聘工作人员考试备考题库附答案
- 招23人!2025年久治县公安局面向社会公开招聘警务辅助人员参考题库附答案
- 2026年及未来5年市场数据中国氟树脂行业发展潜力分析及投资方向研究报告
- 2025年度麻醉科主任述职报告
- Scratch讲座课件教学课件
- 2025年度安全生产工作述职报告
- 2025年全国硕士研究生考试《管理类联考综合能力》试题及答案
- 护理质量管理质控方案2026
- 《低碳医院评价指南》(T-SHWSHQ 14-2025)
- 马的文化介绍
- 二年级数学计算题专项练习1000题汇编集锦
- AI技术在人力资源管理中的实际应用案例分享
- 急诊预检分诊课件教学
评论
0/150
提交评论