版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖南省邵阳市新邵县高二数学第一学期期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若是双曲线的左右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为,若,则该双曲线的离心率为()A. B.C. D.2.如图所示,过抛物线的焦点F的直线依次交抛物线及准线于点A,B,C.若,且,则抛物线的方程为()A. B.C. D.3.下列说法正确的有()个.①向量,,,不一定成立;②圆与圆外切③若,则数是数,的等比中项.A.1 B.2C.3 D.04.用数学归纳法证明时,第一步应验证不等式()A. B.C. D.5.若函数的导函数为偶函数,则的解析式可能是()A. B.C. D.6.曲线的一个焦点F到两条渐近线的垂线段分别为FA,FB,O为坐标原点,若四边形OAFB是菱形,则双曲线C的离心率等于()A. B.C.2 D.7.如图,过抛物线的焦点的直线依次交抛物线及准线于点,若且,则抛物线的方程为()A.B.C.D.8.下列说法错误的是()A.“若,则”的逆否命题是“若,则”B.“”的否定是”C.“是"”的必要不充分条件D.“或是"”的充要条件9.我国古代数学名著《算法统宗》中说:“九百九十六斤棉,赠分八子做盘缠,次第每人多十七,要将第八数来言,务要分明依次第,孝和休惹外人传.”意为:“996斤棉花,分别赠送给8个子女做旅费,从第一个孩子开始,以后每人依次多17斤,直到第8个孩子为止.分配时一定要依照次序分,要顺从父母,兄弟间和气,不要引得外人说闲话.”在这个问题中,第5个孩子分到棉花为()A.133斤 B.116斤C.99斤 D.65斤10.三棱锥A-BCD中,E,F,H分别为边CD,AD,BC的中点,BE,DH的交点为G,则的化简结果为()A. B.C. D.11.2021年6月17日9时22分,搭载神舟十二号载人飞船的长征二号F遥十二运载火箭,在酒泉卫星发射中心点火发射.此后,神舟十二号载人飞船与火箭成功分离,进入预定轨道,并快速完成与“天和”核心舱的对接,聂海胜、刘伯明、汤洪波3名宇航员成为核心舱首批“入住人员”,并在轨驻留3个月,开展舱外维修维护,设备更换,科学应用载荷等一系列操作.已知神舟十二号飞船的运行轨道是以地心为焦点的椭圆,设地球半径为R,其近地点与地面的距离大约是,远地点与地面的距离大约是,则该运行轨道(椭圆)的离心率大约是()A. B.C. D.12.我国的刺绣有着悠久的历史,如图,(1)(2)(3)(4)为刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形个数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第个图形包含个小正方形,则的表达式为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的单调递减区间是,则的值为______.14.若圆的一条直径的端点是、,则此圆的方程是_______15.如图,一个酒杯的内壁的轴截面是抛物线的一部分,杯口宽cm,杯深8cm,称为抛物线酒杯.①在杯口放一个表面积为的玻璃球,则球面上的点到杯底的最小距离为______cm;②在杯内放入一个小的玻璃球,要使球触及酒杯底部,则玻璃球的半径的取值范围为______(单位:cm)16.已知,,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点,点B为直线上的动点,过B作直线的垂线,线段AB的中垂线与交于点P(1)求点P的轨迹C的方程;(2)若过点的直线l与曲线C交于M,N两点,求面积的最小值.(O为坐标原点)18.(12分)已知抛物线的焦点到准线的距离为,过点的直线与抛物线只有一个公共点.(1)求抛物线的方程;(2)求直线的方程.19.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,,,△ABC的面积为(1)求a;(2)若D为BC边上一点,且∠BAD=,求∠ADC的正弦值20.(12分)如图,在四棱锥中,平面平面ABCD,底面ABCD是矩形,,,直线PA与CD所成角为60°.(1)求直线PD与平面ABCD所成角的正弦值;(2)求二面角的正弦值.21.(12分)已知双曲线与椭圆有公共焦点,且它的一条渐近线方程为.(1)求椭圆的焦点坐标;(2)求双曲线的标准方程22.(10分)某初中学校响应“双减政策”,积极探索减负增质举措,优化作业布置,减少家庭作业时间.现为调查学生的家庭作业时间,随机抽取了名学生,记录他们每天完成家庭作业的时间(单位:分钟),将其分为,,,,,六组,其频率分布直方图如下图:(1)求的值,并估计这名学生完成家庭作业时间的中位数(中位数结果保留一位小数);(2)现用分层抽样的方法从第三组和第五组中随机抽取名学生进行“双减政策”情况访谈,再从访谈的学生中选取名学生进行成绩跟踪,求被选作成绩跟踪的名学生中,第三组和第五组各有名的概率
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据已知条件,找出,的齐次关系式即可得到双曲线的离心率.【详解】由题意得,,,在中,,因,故,在,由余弦定理得,即,计算得,故.故选:D.【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合转化为a,c的齐次式,然后等式(不等式)两边分别除以a或转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)2、A【解析】分别过点作准线的垂线,分别交准线于点,,设,推出;根据,进而推导出,结合抛物线定义求出;最后由相似比推导出,即可求出抛物线的方程.【详解】如图分别过点作准线的垂线,分别交准线于点,,设与交于点.设,,,由抛物线定义得:,故在直角三角形中,,,,,,,∥,,,即,,所以抛物线的方程为.故选:A3、A【解析】由向量数量积为实数,以及向量共线定理,即可判断①;求出圆心距,即可判断两圆位置关系,从而判断②;取,即可判断③【详解】对于①,与共线,与共线,故不一定成立,故①正确;对于②,圆的圆心为,半径为,圆可变形为,故其圆心为,半径为,则圆心距,由,所以两圆相交,故②错误;对于③,若,取,则数不是数的等比中项,故③错误故选:A4、B【解析】取即可得到第一步应验证不等式.【详解】由题意得,当时,不等式为故选:B5、C【解析】根据题意,求出每个函数的导函数,进而判断答案.【详解】对A,,为奇函数;对B,,为奇函数;对C,,为偶函数;对D,,既不是奇函数也不是偶函数.故选:C.6、A【解析】依题意可得为正方形,即可得到,从而得到双曲线的渐近线为,即可求出双曲线的离心率;【详解】解:依题意,,且四边形为菱形,所以为正方形,所以,即双曲线的渐近线为,即,所以;故选:A7、D【解析】如图根据抛物线定义可知,进而推断出的值,在直角三角形中求得,进而根据,利用比例线段的性质可求得,则抛物线方程可得.【详解】如图分别过点,作准线的垂线,分别交准线于点,设,则由已知得:,由定义得:,故在直角三角形中,,,,从而得,,求得,所以抛物线的方程为故选:D8、C【解析】利用逆否命题、命题的否定、充分必要性的概念逐一判断即可.【详解】对于A,“若,则”的逆否命题是“若,则”,正确;对于B,“”的否定是”,正确;对于C,“”等价于“或,∴“是"”的充分不必要条件,错误;对于D,“或是"”的充要条件,正确.故选:C9、A【解析】根据等差数列的前n项和公式、等差数列的通项公式进行求解即可.【详解】依题意得,八个子女所得棉花斤数依次构成等差数列,设该等差数列为,公差为d,前n项和为,第一个孩子所得棉花斤数为,则由题意得,,解得,故选:A10、D【解析】依题意可得为的重心,由三角形重心的性质可知,由中位线定理可知,再利用向量的加法运算法则即可求出结果【详解】解:依题意可得为的重心,,,分别为边,和的中点,,,故选:D11、A【解析】以运行轨道长轴所在直线为x轴,地心F为右焦点建立平面直角坐标系,设椭圆方程为,根据题意列出方程组,解方程组即可.【详解】以运行轨道长轴所在直线为x轴,地心F为右焦点建立平面直角坐标系,设椭圆方程为,其中,根据题意有,,所以,,所以椭圆的离心率故选:A12、D【解析】先分别观察给出正方体的个数为:1,,,,总结一般性的规律,将一般性的数列转化为特殊的数列再求解【详解】解:根据前面四个发现规律:,,,,,累加得:,,故选:【点睛】本题主要考查了归纳推理,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求出,由题设易知是的解集,利用根与系数关系求m、n,进而求的值.【详解】由题设,,由单调递减区间是,∴的解集为,则是的解集,∴,可得,故.故答案为:14、【解析】先设圆上任意一点的坐标,然后利用直径对应的圆周角为直角,再利用向量垂直建立方程即可【详解】设圆上任意一点的坐标为可得:,则有:,即解得:故答案为:15、①.②.【解析】根据题意,,进而得,,故最小距离为;进而建立坐标系,得抛物线方程为,当杯内放入一个小的玻璃球,要使球触及酒杯底部,此时设玻璃球轴截面所在圆的方程为,进而只需满足抛物线上的点到圆心的距离大于等于半径恒成立,再根据几何关系求解即可.【详解】因为杯口放一个表面积为的玻璃球,所以球的半径为,又因为杯口宽cm,所以如图1所示,有,所以,所以,所以,又因为杯深8cm,即故最小距离为如图1所示,建立直角坐标系,易知,设抛物线的方程为,所以将代入得,故抛物线方程为,当杯内放入一个小的玻璃球,要使球触及酒杯底部,如图2,设玻璃球轴截面所在圆的方程为,依题意,需满足抛物线上的点到圆心的距离大于等于半径恒成立,即,则有恒成立,解得,可得.所以玻璃球的半径的取值范围为.故答案为:;【点睛】本题考查抛物线的应用,考查数学建模能力,运算求解能力,是中档题.本题第二问解题的关键在于设出球触及酒杯底部的轴截面圆的方程,进而将问题转化为抛物线上的点到圆心的距离大于等于半径恒成立求解.16、5【解析】根据空间向量的数量积运算的坐标表示运算求解即可.【详解】解:因为,,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由已知可得,根据抛物线的定义可知点的轨迹是以为焦点,为准线的抛物线,即可得到轨迹方程;(2)设直线方程为,,,,,联立直线与抛物线方程,消元、列出韦达定理,则,代入韦达定理,即可求出面积最小值;【小问1详解】解:由已知可得,,即点到定点的距离等于到直线的距离,故点的轨迹是以为焦点,为准线的抛物线,所以点的轨迹方程为【小问2详解】解:当直线的倾斜角为时,与曲线只有一个交点,不符合题意;当直线的倾斜角不为时,设直线方程为,,,,,由,可得,,所以,,,,所以当且仅当时取等号,即面积的最小值为;18、(1);(2)或或.【解析】(1)根据给定条件结合p的几何意义,直接求出p写出方程作答.(2)直线l的斜率存在设出其方程,再与抛物线C的方程联立,再讨论计算,l斜率不存在时验证作答.【小问1详解】因抛物线的焦点到准线的距离为,于是得,所以抛物线的方程为.【小问2详解】当直线的斜率存在时,设直线为,由消去y并整理得:,当时,,点是直线与抛物线唯一公共点,因此,,直线方程为,当时,,此时直线与抛物线相切,直线方程为,当直线的斜率不存在时,y轴与抛物线有唯一公共点,直线方程为,所以直线方程为为或或.19、(1)(2)【解析】(1)利用面积公式及余弦定理可求解;(2)由正弦定理得到,再运用同角函数的关系得到,最后运用正弦的两角和公式求解即可.【小问1详解】∵,,,∴由余弦定理:,∴【小问2详解】在中,由正弦定理得,∴,易知B为锐角,∴,∴20、(1)(2)【解析】(1),所以PA与AB所成的锐角或直角等于PA与CD所成角,然后过P在平面PAB内作,可得平面ABCD,从而可求出答案.(2)可证平面PAB,过B在平面PAB内作,连结CF,则是二面角的平面角,从而可求解.【小问1详解】因为,所以PA与AB所成的锐角或直角等于PA与CD所成角,可知,是正三角形.过P在平面PAB内作,垂足为E,因为平面平面ABCD,所以平面ABCD,是直线PD与平面ABCD所成角.在正中,,,所以,故直线PD与平面ABCD所成角的正弦值为.【小问2详解】因为,平面平面ABCD,平面平面ABCD又平面ABCD,所以平面PAB.又平面PAB.则过B在平面PAB内作,垂足为F,连结CF,又,则平面,又平面所以,所以是二面角的平面角.因为,,所以,从而所以二面角正弦值为.21、(1);(2).【解析】(1)由椭圆方程及其参数关系求出参数c,即可得焦点坐标.(2)由渐近线及焦点坐标,可设双曲线方程为,再由双曲线参数关系求出参数,即可得双曲线标准方程.【小问1详解】由题设,,又,所以椭圆的焦点坐标为.【小问2详解】由题设,令双曲线为,由(1)知:,可得,所以双曲线的标准方程为.22、(1);这名学生完成家庭作业时间的中位数约为分钟(2)【解析】(1)由频率分布直方图频率之和为,建立
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 10895-2025离心机、分离机机械振动测试与评价
- 农村信用社招聘试题附答案
- 医院岗前培训考试及答案
- 车间安全培训试题附参考答案(完整版)
- 吉林省延吉市公开遴选公务员笔试题及答案解析(A类)
- 人力资源职称试题及答案
- 医护论文试题及答案
- 金融知识多项选择题试题(附答案)
- 《计算机应用基础》各章习题参考答案
- 高频教务小组面试题及答案
- 安全生产目标及考核制度
- (2026版)患者十大安全目标(2篇)
- 大数据安全技术与管理
- 2026青岛海发国有资本投资运营集团有限公司招聘计划笔试备考试题及答案解析
- 七年级下册《6.1 第3课时 平方根》课件
- 一年级至六年级英语单词汇总
- 矩形容器计算(ABCDE型通用)V1.1
- GB/T 13789-2022用单片测试仪测量电工钢带(片)磁性能的方法
- GB/T 33092-2016皮带运输机清扫器聚氨酯刮刀
- GB/T 16535-2008精细陶瓷线热膨胀系数试验方法顶杆法
- 中学主题班会课:期末考试应试技巧点拨(共34张PPT)
评论
0/150
提交评论