版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市丰台区重点中学2026届高二上数学期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知曲线C的方程为,则下列结论正确的是()A.当时,曲线C为圆B.“”是“曲线C为焦点在x轴上的双曲线”的充分而不必要条件C.“”是“曲线C为焦点在x轴上的椭圆”的必要而不充分条件D.存在实数k使得曲线C为双曲线,其离心率为2.如图是等轴双曲线形拱桥,现拱顶距离水面6米,水面宽米,若水面下降6米,则水面宽()A.米 B.米C.米 D.米3.十二平均律是我国明代音乐理论家和数学家朱载堉发明的.明万历十二年(公元1584年),他写成《律学新说》,提出了十二平均律的理论.十二平均律的数学意义是:在1和2之间插入11个正数,使包含1和2的这13个数依次成递增的等比数列.依此规则,插入的第四个数应为()A. B.C. D.4.若直线a不平行于平面,则下列结论正确的是()A.内的所有直线均与直线a异面 B.直线a与平面有公共点C.内不存在与a平行的直线 D.内的直线均与a相交5.命题;命题.则A.“或”为假 B.“且”为真C.真假 D.假真6.若方程表示双曲线,则实数m的取值范围是()A. B.C. D.7.沙糖桔网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是()A.月收入的最大值为90万元,最小值为30万元 B.这一年的总利润超过400万元C.这12个月利润的中位数与众数均为30 D.7月份的利润最大8.已知椭圆,则下列结论正确的是()A.长轴长为2 B.焦距为C.短轴长为 D.离心率为9.抛物线有如下光学性质:平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线的焦点为F,一条平行于y轴的光线从点射出,经过抛物线上的点A反射后,再经抛物线上的另一点B射出,则经点B反射后的反射光线必过点()A. B.C. D.10.已知向量,,且与互相垂直,则k的值是().A.1 B.C. D.11.若函数在定义域上单调递增,则实数的取值范围为()A. B.C. D.12.设aR,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知曲线表示焦点在轴上的双曲线,则符合条件的的一个整数值为______.14.在△ABC中,角A,B,C所对的边分别为a,b,c,设△ABC的面积为S,其中,,则S的最大值为______15.直线的倾斜角的大小是_________.16.如图直线过点,且与直线和分别相交于,两点.(1)求过与交点,且与直线垂直的直线方程;(2)若线段恰被点平分,求直线的方程.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,四边形为平行四边形,且,,三角形为等腰直角三角形,且,.(1)若点为棱的中点,证明:平面平面;(2)若平面平面,点为棱的中点,求直线与平面所成角的正弦值.18.(12分)已知抛物线的焦点为,点为坐标原点,直线过定点(其中,)与抛物线相交于两点(点位于第一象限.(1)当时,求证:;(2)如图,连接并延长交抛物线于两点,,设和的面积分别为和,则是否为定值?若是,求出其值;若不是,请说明理由.19.(12分)已知椭圆经过点,椭圆E的一个焦点为(1)求椭圆E的方程;(2)若直线l过点且与椭圆E交于A,B两点.求的最大值20.(12分)如图,已知双曲线,过向双曲线作两条切线,切点分别为,,且.(1)证明:直线的方程为.(2)设为双曲线的左焦点,证明:.21.(12分)在等比数列中,是与的等比中项,与的等差中项为6(1)求的通项公式;(2)设,求数列前项和22.(10分)如图,正方体的棱长为2,点为的中点.(1)求直线与平面所成角的正弦值;(2)求点到平面的距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据椭圆、双曲线的定义及简单几何性质计算可得;【详解】解:由题意,曲线C的方程为,对于A中,当时,曲线C的方程为,此时曲线C表示椭圆,所以A错误;对于B中,当曲线C的方程为表示焦点在x轴上的双曲线时,则满足,解得,所以“”是“曲线C为焦点在x轴上的双曲线”的必要不充分条件,所以B不正确;对于C中,当曲线C的方程为表示焦点在x轴上的椭圆时,则满足,解得,所以“”是“曲线C为焦点在x轴上的双曲线”的必要不充分条件,所以C正确;对于D中,当曲线C的方程为表示双曲线,且离心率为时,此时双曲线的实半轴长等于虚半轴长,此时,解得,此时方程表示圆,所以不正确.故选:C.2、B【解析】以双曲线的对称中心为原点,焦点所在对称轴为y轴建立直角坐标系,求出双曲线方程,数形结合即可求解.【详解】如图所示,以双曲线的对称中心为原点,焦点所在对称轴为y轴建立直角坐标系,设双曲线标准方程为:(a>0),则顶点,,将A点代入双曲线方程得,,当水面下降6米后,,代入双曲线方程得,,∴水面宽:米.故选:B.3、C【解析】先求出等比数列的公比,再由等比数列的通项公式即可求解.【详解】用表示这个数列,依题意,,则,,第四个数即.故选:C.4、B【解析】根据题意可得直线a与平面相交或在平面内,结合线面的位置关系依次判断选项即可.【详解】若直线a不平行与平面,则直线a与平面相交或在平面内.A:内的所有直线均与直线a异面错误,也可能相交,故A错误;B:直线a与平面相交或直线a在平面内都有公共点,故B正确;C:平面内不存在与a平行的直线,错误,当直线a在平面内就存在与a平行的直线,故C错误;D:平面内的直线均与a相交,错误,也可能异面,故D错误.故选:B5、D【解析】命题:可能为0,不为0,假命题,命题:,为真命题,所以“或”为真命题,“且”为假命题.选D.6、A【解析】方程化为圆锥曲线(椭圆与双曲线)标准方程的形式,然后由方程表示双曲线可得不等关系【详解】解:方程可化为,它表示双曲线,则,解得.故选:A7、B【解析】根据图形和中位数、众数的概念依次判断选项即可.【详解】A:由图可知,月收入的最大值为90,最小值为30,故A正确;B:各个月的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,所以总利润为20+30+20+10+30+30+60+40+30+30+50+30=380(万元),故B错误;C:这12个月利润的中位数与众数均为30,故C正确;D:7月份的利润最大,为60万元,故D正确.故选:B8、D【解析】根据已知条件求得,由此确定正确答案.【详解】依题意椭圆,所以,所以长轴长为,焦距为,短轴长为,ABC选项错误.离心率为,D选项正确.故选:D9、D【解析】求出、坐标可得直线的方程,与抛物线方程联立求出,根据选项可得答案,【详解】把代入得,所以,所以直线的方程为即,与抛物线方程联立解得,所以,因为反射光线平行于y轴,根据选项可得D正确,故选:D10、D【解析】利用向量的数量积为0可求的值.【详解】因与互相垂直,故,故即,故.故选:D.11、D【解析】函数在定义域上单调递增等价于在上恒成立,即在上恒成立,然后易得,最后求出范围即可.【详解】函数的定义域为,,在定义域上单调递增等价于在上恒成立,即在上恒成立,即在上恒成立,分离参数得,所以,即.【点睛】方法点睛:已知函数的单调性求参数的取值范围的通解:若在区间上单调递增,则在区间上恒成立;若在区间上单调递减,则在区间上恒成立;然后再利用分离参数求得参数的取值范围即可.12、A【解析】运用两直线平行的充要条件得出l1与l2平行时a的值,而后运用充分必要条件的知识来解决即可解:∵当a=1时,直线l1:x+2y﹣1=0与直线l2:x+2y+4=0,两条直线的斜率都是﹣,截距不相等,得到两条直线平行,故前者是后者的充分条件,∵当两条直线平行时,得到,解得a=﹣2,a=1,∴后者不能推出前者,∴前者是后者的充分不必要条件故选A考点:必要条件、充分条件与充要条件的判断;直线的一般式方程与直线的平行关系二、填空题:本题共4小题,每小题5分,共20分。13、.(答案不唯一)【解析】给出一个符合条件的值即可.【详解】当时,曲线表示焦点在轴上的双曲线,故答案为:.(答案不唯一)14、【解析】应用余弦定理有,再由三角形内角性质及同角三角函数平方关系求,根据基本不等式求得,注意等号成立条件,最后利用三角形面积公式求S的最大值.【详解】由余弦定理知:,而,所以,而,即,当且仅当时等号成立,又,当且仅当时等号成立.故答案为:15、【解析】由题意,即,∴考点:直线的倾斜角.16、(1);(2).【解析】本题考查直线方程的基本求法:垂直直线的求法、点关于点对称、点在直线上的待定系数法【详解】(1)由题可得交点,所以所求直线方程为,即;(2)设直线与直线相交于点,因为线段恰被点平分,所以直线与直线的交点的坐标为将点,的坐标分别代入,的方程,得方程组解得由点和点及两点式,得直线的方程为,即【点睛】直线的考法主要以点的对称和直线的平行与垂直为主.点关于点的对称,点关于直线的对称,直线关于直线的对称,是重点考察内容三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)先证明,,进而证明平面,即可证明平面,从而证明平面平面.(2)以点为坐标原点,分别以,,所在直线为轴,轴,轴,建立如图所示的空间直角坐标系,用向量法求解即可【小问1详解】因为为等腰直角三角形,点为棱的中点,所以,又因为,,所以,又因为在中,,,所以,所以,所以,又因为,所以平面,又因为为平行四边形,所以,所以平面,又因为平面,所以平面平面.【小问2详解】因为平面平面,平面平面,,所以平面,又因为,以点为坐标原点,分别以,,所在直线为轴,轴,轴,建立如图所示的空间直角坐标系.则,,,,所以,,,,设平面的一个法向量为,则由,,可得令,得,设直线与平面所成角为,,所以直线与平面所成角的正弦值为.18、(1)证明见解析;(2)是定值,定值为.【解析】(1)设直线方程为,联立直线与抛物线的方程得到韦达定理,再利用韦达定理求出,即得证;(2)设直线方程为,联立直线与抛物线的方程得到韦达定理,再求出,,即得解.【详解】(1)设直线方程为,联立直线与抛物线的方程,消去,得,所以.所以即.(2)设直线方程为,联立直线与抛物线的方程,消去,得,故.设的方程为,联立直线与拋物线的方程,消去得,从而,则,同理可得,,即定值.19、(1);(2).【解析】(1)利用代入法,结合焦点的坐标、椭圆中的关系进行求解即可;(2)根据直线l是否存在斜率分类讨论,结合一元二次方程根的判别式、根与系数关系、弦长公式、基本不等式进行求解即可.【小问1详解】依题意:,解得,,∴椭圆E的方程为;【小问2详解】当直线l的斜率存在时,设,,由得由得.由,得当且仅当,即时等号成立当直线l的斜率不存在时,,∴的最大值为20、(1)证明见解析(2)证明见解析【解析】(1)设出切线方程,联立后用韦达定理及根的判别式进行表达出A的横坐标与纵坐标,进而表达出直线的方程,化简即为结果;(2)再第一问的基础上,利用向量的夹角公式表达出夹角的余弦值,进而证明出结论.【小问1详解】显然直线的斜率存在,设直线的方程为,联立得,则,化简得.因为方程有两个相等实根,故切点A的横坐标,得,则,故,则,即.【小问2详解】同理可得,又与均过,所以.故,,,又因为,所以,则,,故,故.【点睛】圆锥曲线中证明角度相关的问题,往往需要转化为斜率或向量进行求解.21、(1);(2).【解析】(1)设出等比数列的公比,根据给定条件列出方程求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 爱护老年人让他们的晚年充满阳光
- 试题及非高危行业生产经营单位主要负责人及安全管理人员安全生附答案
- 静脉治疗考试题及答案
- 《西游记》阅读测试题(带答案)
- 平顶山市卫东区社区网格员招录考试真题库及完整答案
- 抗肿瘤药物培训考核试题含答案
- 房地产经纪业务操作《房地产经济业务技巧必看题库知识点》模拟考试卷含答案
- 篮球模块课考试题及答案
- 睢县辅警招聘公安基础知识题库附含答案
- 全媒体运营师考试阶段性试题和答案
- 客运驾驶员培训教学大纲
- 洗浴员工协议书
- 园区托管运营协议书
- 清欠历史旧账协议书
- 临床创新驱动下高效型护理查房模式-Rounds护士查房模式及总结展望
- 乙肝疫苗接种培训
- GB/T 45133-2025气体分析混合气体组成的测定基于单点和两点校准的比较法
- 食品代加工业务合同样本(版)
- 北京市行业用水定额汇编(2024年版)
- 安全生产应急平台体系及专业应急救援队伍建设项目可行性研究报告
- 中国传统美食饺子历史起源民俗象征意义介绍课件
评论
0/150
提交评论