版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖北省武汉为明实验学校高二上数学期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在四面体中,点G是的重心,设,,,则()A. B.C. D.2.为调查学生的课外阅读情况,学校从高二年级四个班的182人中随机抽取30人了解情况,若用系统抽样的方法,则抽样的间隔和随机剔除的个数分别为()A.6,2 B.2,3C.2,60 D.60,23.已知椭圆C:的左、右焦点分别为F1,F2,过点F1作直线l交椭圆C于M,N两点,则的周长为()A.3 B.4C.6 D.84.已知F是椭圆C的一个焦点,B是短轴的一个端点,直线BF与椭圆C的另一个交点为D,且,则C的离心率为()A. B.C. D.5.若,则下列不等式①;②;③;④中,正确的不等式有()A.0个 B.1个C.2个 D.3个6.已知数列是等比数列,且,则的值为()A.3 B.6C.9 D.367.若复数,则()A B.C. D.8.已知角的终边经过点,则,的值分别为A., B.,C., D.,9.已知的展开式中,各项系数的和与其各项二项式系数的和之比为,则()A.4 B.5C.6 D.710.一条直线过原点和点,则这条直线的倾斜角是()A. B.C. D.11.若函数在区间上单调递增,则实数的取值范围是()A. B.C. D.12.攒(cuán)尖是我国古代建筑中屋顶的一种结构样式,多见于亭阁或园林式建筑.下图是一顶圆形攒尖,其屋顶可近似看作一个圆锥,其轴截面(过圆锥轴的截面)是底边长为,顶角为的等腰三角形,则该屋顶的面积约为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若某几何体的三视图如图所示,则该几何体的体积是__________14.函数的单调递减区间是____15.已知直线,,若,则实数______16.关于曲线,给出下列三个结论:①曲线关于原点对称,但不关于轴、轴对称;②曲线恰好经过4个整点(即横、纵坐标均为整数的点);③曲线上任意一点到原点的距离都不大于.其中,正确结论的序号是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设命题,,命题,.若p、q都为真命题,求实数m的取值范围.18.(12分)已知椭圆的左、右焦点分别为,离心率为,圆:过椭圆的三个顶点,过点的直线(斜率存在且不为0)与椭圆交于两点(1)求椭圆的标准方程(2)证明:在轴上存在定点,使得为定值,并求出定点的坐标19.(12分)如图,在四棱锥中,底面是矩形,平面于点M连接.(1)求证:平面;(2)求平面与平面所成角的余弦值.20.(12分)如图,三棱锥中,为等边三角形,且面面,(1)求证:;(2)当与平面BCD所成角为45°时,求二面角的余弦值21.(12分)已知圆.(1)若直线与圆相交于两点,弦的中点为,求直线的方程;(2)若斜率为1的直线被圆截得的弦为,以为直径的圆经过圆的圆心,求直线的方程.22.(10分)在平面直角坐标系中,有一条长度为3的线段,端点,分别在轴、轴上运动,为线段上一点,且.(1)求点的轨迹的方程;(2)已知不过原点的直线与相交于,两点,且线段始终被直线平分.求的面积取最大时直线的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】结合重心的知识以及空间向量运算求得正确答案.【详解】设是中点,.故选:B2、A【解析】根据系统抽样的方法即可求解.【详解】从人中抽取人,除以,商余,故抽样的间隔为,需要随机剔除人.故选:A.3、D【解析】由的周长为,结合椭圆的定义,即可求解.【详解】由题意,椭圆,可得,即,如图所示,根据椭圆的定义,可得的周长为故选:D.4、A【解析】设,根据得,代入椭圆方程即可求得离心率.【详解】设椭圆方程,所以,设,所以,所以,在椭圆上,所以,.故选:A5、C【解析】由条件,可得,利用不等式的性质和基本不等式可判断①、②、③、④中不等式的正误,得出答案.【详解】因为,所以.因此,且,且②、③不正确.所以,所以①正确,由得、均为正数,所以,(由条件,所以等号不成立),所以④正确.故选:C.6、C【解析】应用等比中项的性质有,结合已知求值即可.【详解】由等比数列的性质知:,,,所以,又,所以.故选:C7、A【解析】根据复数的乘法运算即可求解.【详解】由,故选:A8、C【解析】利用任意角的三角函数的定义:,,,代入计算即可得到答案【详解】由于角的终边经过点,则,,(为坐标原点),所以由任意角的三角函数的定义:,.故答案选C【点睛】本题考查任意角的三角函数的定义,解决此类问题的关键是掌握牢记三角函数定义并能够熟练应用,属于基础题9、C【解析】利用赋值法确定展开式中各项系数的和以及二项式系数的和,利用比值为,列出关于的方程,解方程.【详解】二项式的各项系数的和为,二项式的各项二项式系数的和为,因为各项系数的和与其各项二项式系数的和之比为,所以,.故选:C.10、C【解析】求出直线的斜率,结合倾斜角的取值范围可求得所求直线的倾斜角.【详解】设这条件直线的倾斜角为,则,,因此,.故选:C.11、A【解析】由函数在上单调递增,可得,从而可求出实数的取值范围【详解】由,得,因为函数在区间上单调递增,所以在区间上恒成立,即恒成立,因为,所以,所以,所以实数的取值范围为,故选:A12、B【解析】由轴截面三角形,根据已知可得圆锥底面半径和母线长,然后可解.【详解】轴截面如图,其中,,所以,所以,所以圆锥的侧面积.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】根据三视图可得如图所示的几何体,从而可求其体积.【详解】据三视图分析知,该几何体为直三棱柱,且底面为直角边为1的等腰直角三角形,高为2,所以其体积故答案为:114、【解析】求导,根据可得答案.【详解】由题意,可得,令,即,解得,即函数的递减区间为.故答案为:.【点睛】本题考查运用导函数的符号,研究函数的单调性,属于基础题.15、【解析】由直线垂直可得到关于实数a的方程,解方程即可.【详解】由直线垂直可得:,解得:.故答案为:16、①③【解析】设为曲线上任意一点,判断、、是否满足曲线方程即可判断①;求出曲线过的整点即可判断②;由条件利用即可得,即可判断③;即可得解.【详解】设为曲线上任意一点,则,设点关于原点、轴、轴的对称点分别为、、,因为;;;所以点在曲线上,点、点不在曲线上,所以曲线关于原点对称,但不关于轴、轴对称,故①正确;当时,;当,.此外,当时,;当时,.故曲线过整点,,,,,,故②错误;又,所以恒成立,由可得,当且仅当时等号成立,所以,所以曲线上任一点到原点的距离,故③正确.故答案为:①③.【点睛】本题考查了与曲线方程有关的命题真假判断,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】先求出命题为真时,的取值范围,再取交集可得答案.【详解】若命题,为真命题,则,解得;若命题,为真命题,则命题,为假命题,即方程无实数根,因此,,解得.又p、q都为真命题,所以实数m的取值范围是.【点睛】本题考查全称命题与特称命题的真假求参数值、一元二次函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.18、(1);(2)见解析,定点【解析】(1)先判断圆经过椭圆的上、下顶点和右顶点,令圆方程中的,得,即.再由求即可.(2)设在轴上存在定点,使得为定值,根据题意,设直线的方程为,联立可得,再运算将韦达定理代入化简有与k无关即可.【详解】(1)由圆方程中的时,的两根不为相反数,故可设圆经过椭圆的上、下顶点和右顶点,令圆方程中的,得,即有又,解得∴椭圆的标准方程为(2)证明:设在轴上存在定点,使得为定值,由(1)可得,设直线的方程为,联立可得,设,则,,要使为定值,只需,解得∴在轴上存在定点,使得为定值,定点的坐标为【点睛】本题主要考查椭圆的几何性质和直线与椭圆的位置关系,还考查了数形结合的思想和运算求解的能力,属于中档题.19、(1)证明见详解(2)【解析】(1)连接,交于点,则为中点,再由等腰三角形三线合一可知为中点,连接,利用中位线可知,根据直线与平面平行的判定定理即可证明;(2)根据题意建立空间直角坐标系,求出两个平面的法向量,利用向量法即可求出两平面所成角的余弦值.【小问1详解】连接,交于点,则为中点,因为,于,则为中点,连接,则,又因为平面,平面,所以平面;【小问2详解】如图所示,以点为坐标原点,建立空间直角坐标系,则,,设平面的一个法向量为,由可得,令,得,即,易知平面的一个法向量为,设平面与平面所成角为,,则平面与平面所成角的余弦值为.20、(1)证明见解析;(2).【解析】(1)根据给定条件证得平面即可推理作答.(2)由与平面BCD所成角确定正边长与CD长的关系,再作出二面角的平面角,借助余弦定理计算作答.【小问1详解】在三棱锥中,平面平面,平面平面,而,平面,因此有平面,又有平面,所以.【小问2详解】取BC中点F,连接AF,DF,如图,因为等边三角形,则,而平面平面,平面平面,平面,于是得平面,是与平面BCD所成角,即,令,则,因,即有,由(1)知,,则有,过C作交AD于O,在平面内过O作交BD于E,连CE,从而得是二面角的平面角,中,,,中,由余弦定理得,,,显然E是斜边中点,则,中,由余弦定理得,所以二面角的余弦值.21、(1)(或(2)或【解析】(1)由条件可得,由此可求直线的斜率,由点斜式求直线的方程;(2)由条件可求到直线的距离,利用待定系数法求直线的方程.【小问1详解】圆,得圆心,半径,直线的斜率:,设直线的斜率为,有,解得.所求直线的方程为:.(或【小问2详解】直线m被圆C截得的弦EF为直径的圆经过圆心C,∴圆心C到直线的距离为.设直线方䄇为,则解得或直线的方程为:或22、(1)(2)【解析】(1)设,根据题意可得,,利用两点之间的距离公式表示出,化简即可得出结果;(2)设,,线段的中点为,利用两点坐标表示直线斜率的公式和点差法求出直线的斜率,设的方程为,联立椭圆方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026重庆农投集团秋招面笔试题及答案
- 儿科术后疼痛管理
- 2025河南南阳市公安机关招聘看护队员200人(二)考试备考题库附答案
- 2026湖北恩施州宣恩茗智未来农业科技有限责任公司招聘1人备考题库附答案
- 2025年扬州市江都区法院系统招聘真题
- 讲授与举例艺术
- 信用评价师创新意识能力考核试卷含答案
- 2026年中国人民警察大学公开招聘27人备考题库及答案详解1套
- 2025年在线教育直播互动平台市场拓展可行性研究
- 2025年文化传媒行业数字内容与沉浸式体验报告
- 传染病学-病毒性肝炎
- 电气试验报告模板
- 重庆市沙坪坝小学小学语文五年级上册期末试卷
- 陶瓷岩板应用技术规程
- 中药制剂技术中职PPT完整全套教学课件
- 龙虎山正一日诵早晚课
- WORD版A4横版密封条打印模板(可编辑)
- 1比较思想政治教育
- 艺术课程标准(2022年版)
- JJF 1654-2017平板电泳仪校准规范
- 上海市工业用水技术中心-工业用水及废水处理课件
评论
0/150
提交评论