版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省大庆市让胡路区铁人中学2026届数学高二上期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线l经过两条直线和的交点,且平行于直线,则直线l的方程为()A. B.C. D.2.抛物线的焦点为F,点为该抛物线上的动点,点A是抛物线的准线与坐标轴的交点,则的最大值是()A.2 B.C. D.3.设是双曲线的两个焦点,是双曲线上的一点,且,则的面积等于()A. B.C.24 D.484.已知椭圆:的左、右焦点分别为,,下顶点为,直线与椭圆的另一个交点为,若为等腰三角形,则椭圆的离心率为()A. B.C. D.5.已知定义域为R的函数f(x)不是偶函数,则下列命题一定为真命题的是()A.∀x∈R,f(-x)≠f(x)B.∀x∈R,f(-x)≠-f(x)C∃x0∈R,f(-x0)≠f(x0)D.∃x0∈R,f(-x0)≠-f(x0)6.已知函数,在上随机任取一个数,则的概率为()A. B.C. D.7.已知向量,,且,则的值是()A. B.C. D.8.刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国宝贵的数学遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是()A. B.C. D.9.已知向量,且,则()A. B.C. D.10.函数的图象大致是()A. B.C. D.11.为了解青少年视力情况,统计得到名青少年的视力测量值(五分记录法)的茎叶图,其中茎表示个位数,叶表示十分位数,则该组数据的中位数是()A. B.C. D.12.已知圆上有三个点到直线的距离等于1,则的值为()A. B.C. D.1二、填空题:本题共4小题,每小题5分,共20分。13.已知某次数学期末试卷中有8道4选1的单选题14.“五经”是《诗经》、《尚书》、《礼记》、《周易》、《春秋》的合称,贵为中国文化经典著作,所载内容及哲学思想至今仍具有积极意义和参考价值.某校计划开展“五经”经典诵读比赛活动,某班有、两位同学参赛,比赛时每位同学从这本书中随机抽取本选择其中的内容诵读,则、两位同学抽到同一本书的概率为______.15.__________16.已知点P是双曲线右支上的一点,且以点P及焦点为定点的三角形的面积为4,则点P的坐标是_____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)若,求的最大值;(2)若,求证:有且只有一个零点.18.(12分)某工厂修建一个长方体无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米(1)求底面积,并用含x的表达式表示池壁面积;(2)怎样设计水池能使总造价最低?最低造价是多少?19.(12分)在三棱锥A—BCD中,已知CB=CD=,BD=2,O为BD的中点,AO⊥平面BCD,AO=2,E为AC的中点(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=BC,设二面角F—DE—C的大小为θ,求sinθ的值20.(12分)已知椭圆C:的长轴长为4,离心率e是方程的一根(1)求椭圆C的方程;(2)已知O是坐标原点,斜率为k的直线l经过点,已知直线l与椭圆C相交于点A,B,求面积的最大值21.(12分)设椭圆:()的离心率为,椭圆上一点到左右两个焦点、的距离之和是4.(1)求椭圆的方程;(2)已知过的直线与椭圆交于、两点,且两点与左右顶点不重合,若,求四边形面积的最大值.22.(10分)排一张有6个歌唱节目和5个舞蹈节目的演出节目单.(1)任何两个舞蹈节目不相邻的排法有多少种?(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】联立已知两条直线方程求出交点,再根据两直线平行则斜率相同求出斜率即可.【详解】由得两直线交点为(-1,0),直线l斜率与相同,为,则直线l方程为y-0=(x+1),即x-2y+1=0.故选:B.2、B【解析】设直线的倾斜角为,设垂直于准线于,由抛物线的性质可得,则,当直线PA与抛物线相切时,最小,取得最大值,设出直线方程得到直线和抛物线相切时的点P的坐标,然后进行计算得到结果.【详解】设直线的倾斜角为,设垂直于准线于,由抛物线的性质可得,所以则,当最小时,则值最大,所以当直线PA与抛物线相切时,θ最大,即最小,由题意可得,设切线PA的方程为:,,整理可得,,可得,将代入,可得,所以,即P的横坐标为1,即P的坐标,所以,,所以的最大值为:,故选:B【点睛】关键点睛:本题主要考查了抛物线的简单性质.解题的关键是利用了抛物线的定义.一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用.尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化3、C【解析】双曲线的实轴长为2,焦距为.根据题意和双曲线的定义知,所以,,所以,所以.所以.故选:C【点睛】本题主要考查了焦点三角形以及椭圆的定义运用,属于基础题型.4、B【解析】由椭圆定义可得各边长,利用三角形相似,可得点坐标,再根据点在椭圆上,可得离心率.【详解】如图所示:因为为等腰三角形,且,又,所以,所以,过点作轴,垂足为,则,由,,得,因为点在椭圆上,所以,所以,即离心率,故选:B.5、C【解析】利用偶函数的定义和全称命题的否定分析判断解答.【详解】∵定义域为R的函数f(x)不是偶函数,∴∀x∈R,f(-x)=f(x)为假命题,∴∃x0∈R,f(-x0)≠f(x0)为真命题.故选C【点睛】本题主要考查偶函数的定义和全称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题.6、A【解析】先解不等式,然后由区间长度比可得.【详解】解不等式,得,所以,即的概率为.故选:A7、A【解析】求出向量,的坐标,利用向量数量积坐标表示即可求解.【详解】因为向量,,所以,,因为,所以,解得:,故选:A.8、B【解析】此点取自该圆内接正六边形的概率是正六边形面积除以圆的面积,分别求出即可.【详解】如图,在单位圆中作其内接正六边形,该正六边形是六个边长等于半径的正三角形,其面积,圆的面积为则所求概率.故选:B【点睛】此题考查几何概率模型求解,关键在于准确求出正六边形的面积和圆的面积.9、A【解析】利用空间向量共线的坐标表示即可求解.【详解】由题意可得,解得,所以.故选:A10、A【解析】根据函数的定义域及零点的情况即可得到答案.【详解】函数的定义域为,则排除选项、,当时,,则在上单调递减,且,,由零点存在定理可知在上存在一个零点,则排除,故选:.11、B【解析】将样本中的数据由小到大进行排列,利用中位数的定义可得结果.【详解】将样本中的数据由小到大进行排列,依次为:、、、、、、、、、,因此,这组数据的中位数为.故选:B.12、A【解析】求出圆心和半径,由题意可得圆心到直线的距离,列方程即可求得的值.【详解】由圆可得圆心,半径,因为圆上有三个点到直线的距离等于1,所以圆心到直线的距离,可得:,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、##0.84375【解析】合理设出事件,利用全概率公式进行求解.【详解】设小王从这8题中任选1题,且作对为事件A,选到能完整做对的5道题为事件B,选到有思路的两道题为事件C,选到完全没有思路为事件D,则,,,由全概率公式可得:PA=PB故答案为:14、##【解析】计算出、两位同学各随机抽出一本书的结果种数,以及、两位同学抽到同一本书的结果种数,利用古典概型的概率公式可求得所求事件的概率.【详解】、两位同学抽到的结果都有种,由分步乘法计数原理可知,、两位同学各随机抽出一本书,共有种结果,而、两位同学抽到同一本书的结果有种,故所求概率为.故答案为:.15、【解析】先由题得到,再整体代入化简即得解.【详解】因为,所以,则故答案为【点睛】本题主要考查差角的正切公式,意在考查学生对该知识的理解掌握水平,属于基础题.16、【解析】由题可得P到x轴的距离为1,把代入,得,可得P点坐标【详解】设,由题意知,所以,则,由题意可得,把代入,得,所以P点坐标为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)利用导数判断原函数单调性,从而可求最值.(2)求导后发现导数中无参数,故单调性与(1)中所求一致,然后利用零点存在定理结合的范围,以及函数单调性证明在定义域内有且只有一个零点.【小问1详解】若,则,其定义域为,∴,由,得,∴当时,;当时,,∴在上单调递增,在上单调递减,∴【小问2详解】证明:,由(Ⅰ)知在上单调递增,在上单调递诚,∵,∴当时,,故在上无零点;当时,,∵且,∴在上有且只有一个零点.综上,有且只有一个零点.18、(1)1600,(平方米);(2)池底设计为边长40米的正方形时总造价最低,最低造价为268800元.【解析】(1)根据题意,由于修建一个长方体无盖蓄水池,其容积为4800立方米,深度为3米可得底面积为1600,池壁面积s=.(2)同时池底每平方米的造价为150元,池壁每平方米的造价为120元设池底长方形长为x米,则可知总造价s=,x=40时,则.故可知当x=40时,则有可使得总造价最低,最低造价是268800元.考点:不等式求解最值点评:主要是考查了不等式求解最值的运用,属于基础题.19、(1)(2)【解析】(1)建立空间直角坐标系,利用向量数量积求直线向量夹角,即得结果;(2)先求两个平面法向量,根据向量数量积求法向量夹角,最后根据二面角与向量夹角关系得结果.【详解】(1)连以为轴建立空间直角坐标系,则从而直线与所成角的余弦值为(2)设平面一个法向量为令设平面一个法向量为令因此【点睛】本题考查利用向量求线线角与二面角,考查基本分析求解能力,属中档题.20、(1);(2).【解析】(1)待定系数法求椭圆的方程;(2)设直线的方程为,,,用“设而不求法”表示出三角形OAB的面积.令转化为关于t的函数,利用函数求最值.【详解】(1)依题意得:,∴.方程的根为或.∵椭圆的离心率,∴,∴∴∴椭圆方程为.(2)设直线的方程为,,由,得,则,点到直线的距离为,.令,则..∵在单调递增,∴时.有最小值3.此时有最大值.∴面积的最大值为.21、(1);(2)6.【解析】(1)本小题根据题意先求,,,再求椭圆的标准方程;(2)本小题先设过的直线的方程,再根据题意表示出四边形的面积,最后求最值即可.【详解】解:(1)∵椭圆上一点到左右两个焦点、的距离之和是4,∴即,∵,∴,又∵,∴.∴椭圆的标准方程为;(2)设点、的坐标为,,因为直线过点,所以可设直线方程为,联立方程,消去可得:,化简整理得,其中,所以,,因为,所以四边形是平行四边形,设平面四边形的面积为,则,设,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026云南楚雄州双柏县公安局招聘警务辅助人员3人备考题库(第一批)含答案详解
- 2026华润微电子有限公司总裁招聘1人备考题库及答案详解(考点梳理)
- 2026江西南昌市劳动保障事务代理中心招聘劳务派遣人员备考题库完整参考答案详解
- 2026云南省医药三发有限公司招聘4人备考题库有完整答案详解
- 【人教版】小学数学二年级上册期末(试卷五)
- 2026江西中医药大学现代中药制剂教育部重点实验室科研助理招聘1人备考题库及答案详解1套
- 2026中国科学院沈阳应用生态研究所国地实验室招聘1人备考题库(科研助理辽宁)及完整答案详解1套
- 2026中国科学院理化技术研究所热声热机团队招聘特别研究助理博士后1人备考题库及答案详解(易错题)
- 2026山东省《东方烟草报》社有限公司招聘3人备考题库及完整答案详解1套
- 2026北京人民邮电出版社校园招聘备考题库(含答案详解)
- 国家基层高血压防治管理指南 2025版图文解读
- 小学数学长度单位换算练习200题及答案
- 机器人工程技术人员笔试试题及答案
- GB/T 18344-2025汽车维护、检测、诊断技术规范
- crm系统使用管理办法
- 肝癌晚期护理常规课件
- 神经外科VTE的预防及护理
- 清洁验证完整版本
- 2023年山东省中考英语二轮复习专题++时态+语态
- 车间新增设备管理制度
- 前沿财务知识培训课件
评论
0/150
提交评论