版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东枣庄市薛城区2026届高二上数学期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直四棱柱的棱长均为,则直线与侧面所成角的正切值为()A. B.C. D.2.“”是“方程表示椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.函数在处有极小值5,则()A. B.C.或 D.或34.函数在处的切线方程为()A. B.C. D.5.如图,矩形BDEF所在平面与正方形ABCD所在平面互相垂直,,,点P在线段EF上.给出下列命题:①存在点P,使得直线平面ACF;②存在点P,使得直线平面ACF;③直线DP与平面ABCD所成角的正弦值的取值范围是;④三棱锥的外接球被平面ACF所截得的截面面积是.其中所有真命题的序号()A.①③ B.①④C.①②④ D.①③④6.数列满足且,则的值是()A.1 B.4C.-3 D.67.已知双曲线,则该双曲线的实轴长为()A.1 B.2C. D.8.2020年北京时间11月24日我国嫦娥五号探月飞行器成功发射.嫦娥五号是我国探月工程“绕、落、回”三步走的收官之战,经历发射入轨、地月转移、近月制动、环月飞行、着陆下降、月面工作、月面上升、交会对接与样品转移、环月等待、月地转移、再入回收等11个关键阶段.在经过交会对接与样品转移阶段后,若嫦娥五号返回器在近月点(离月面最近的点)约为200公里,远月点(离月面最远的点)约为8600公里,以月球中心为一个焦点的椭圆形轨道上等待时间窗口和指令进行下一步动作,月球半径约为1740公里,则此椭圆轨道的离心率约为()A.0.32 B.0.48C.0.68 D.0.829.已知关于的不等式的解集是,则的值是()A. B.5C. D.710.直线分别与曲线,交于,两点,则的最小值为()A. B.1C. D.211.已知双曲线=1的一条渐近线方程为x-4y=0,其虚轴长为()A.16 B.8C.2 D.112.圆与圆的位置关系是()A.内切 B.相交C.外切 D.相离二、填空题:本题共4小题,每小题5分,共20分。13.已知p:“”为真命题,则实数a的取值范围是_________.14.圆心为直线与直线的交点,且过原点的圆的标准方程是________15.若直线是曲线的切线,也是曲线的切线,则__________16.已知是椭圆的一个焦点,为椭圆上一点,为坐标原点,若为等边三角形,则椭圆的离心率为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点及圆,点P是圆B上任意一点,线段的垂直平分线l交半径于点T,当点P在圆上运动时,记点T的轨迹为曲线E(1)求曲线E的方程;(2)设存在斜率不为零且平行的两条直线,,它们与曲线E分别交于点C、D、M、N,且四边形是菱形,求该菱形周长的最大值18.(12分)已知椭圆的上顶点在直线上,点在椭圆上.(1)求椭圆C的方程;(2)点P,Q在椭圆C上,且,,点G为垂足,是否存在定圆恒经过A,G两点,若存在,求出圆的方程;若不存在,请说明理由.19.(12分)如图,在直三棱柱中,,分别是棱的中点,点在线段上.(1)当直线与平面所成角最大时,求线段的长度;(2)是否存在这样的点,使平面与平面所成的二面角的余弦值为,若存在,试确定点的位置,若不存在,说明理由.20.(12分)已知椭圆的中心在原点,焦点为,,且长轴长为4.(1)求椭圆的方程;(2)直线与椭圆相交于A,两点,求弦长.21.(12分)如图,直四棱柱中,底面是边长为的正方形,点在棱上.(1)求证:;(2)从条件①、条件②、条件③这三个条件中选择两个作已知,使得平面,并给出证明.条件①:为的中点;条件②:平面;条件③:.(3)在(2)的条件下,求平面与平面夹角的余弦值.22.(10分)已知函数在处有极值.(1)求的值;(2)求函数在上的最大值与最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意把直线与侧面所成角的正切值转化为在直角三角形中的正切值,即可求出答案.【详解】由题意可知直四棱柱如下图所示:取的中点设为点,连接,在直四棱柱中,面,面,,在四边形中,,,故且.面,面,面,.故直线与侧面所成角的正切值为.故选:D.2、B【解析】方程表示椭圆,可得,解出的范围即可判断出结论.【详解】∵方程表示椭圆,∴解得或,故“”是“方程表示椭圆”的必要不充分条件.故选:B3、A【解析】由题意条件和,可建立一个关于的方程组,解出的值,然后再将带入到中去验证其是否满足在处有极小值,排除增根,即可得到答案.【详解】由题意可得,则,解得,或.当,时,.由,得;由,得.则在上单调递增,在上单调递减,故在处有极大值5,不符合题意.当,时,.由,得;由,得.则在上单调递减,在上单调递增,故在处有极小值5,符合题意,从而故选:A.4、C【解析】利用导数的几何意义即可求切线方程﹒【详解】,,,,在处的切线为:,即﹒故选:C﹒5、D【解析】当点P是线段EF中点时判断①;假定存在点P,使得直线平面ACF,推理导出矛盾判断②;利用线面角的定义转化列式计算判断③;求出外接圆面积判断④作答.【详解】取EF中点G,连DG,令,连FO,如图,在正方形ABCD中,O为BD中点,而BDEF是矩形,则且,即四边形DGFO是平行四边形,即有,而平面ACF,平面ACF,于是得平面ACF,当点P与G重合时,直线平面ACF,①正确;假定存在点P,使得直线平面ACF,而平面ACF,则,又,从而有,在中,,DG是直角边EF上中线,显然在线段EF上不存在点与D连线垂直于DG,因此,假设是错的,即②不正确;因平面平面,平面平面,则线段EF上的动点P在平面上的射影在直线BD上,于是得是直线DP与平面ABCD所成角的,在矩形BDEF中,当P与E不重合时,,,而,则,当P与E重合时,,,因此,,③正确;因平面平面,平面平面,,平面,则平面,,在中,,显然有,,由正弦定理得外接圆直径,,三棱锥的外接球被平面ACF所截得的截面是的外接圆,其面积为,④正确,所以所给命题中正确命题的序号是①③④.故选:D【点睛】结论点睛:两个平面互相垂直,则一个平面内任意一点在另一个平面上的射影都在这两个平面的交线上.6、A【解析】根据题意,由于,可知数列是公差为-3的等差数列,则可知d=-3,由于=,故选A7、B【解析】根据给定的双曲线方程直接计算即可作答.【详解】双曲线的实半轴长,所以该双曲线的实轴长为2.故选:B8、C【解析】由题意可知,求出的值,从而可求出椭圆的离心率【详解】解:由题意得,解得,所以离心率,故选:C9、D【解析】由题意可得的根为,然后利用根与系数的关系列方程组可求得结果【详解】因为关于的不等式的解集是,所以方程的根为,所以,得,所以,故选:D10、B【解析】设,,,,得到,用导数法求解.【详解】解:设,,,,则,,,令,则,函数在上单调递减,在上单调递增,时,函数的最小值为1,故选:B11、C【解析】根据双曲线的渐近线方程的特点,结合虚轴长的定义进行求解即可.【详解】因为双曲线=1的一条渐近线方程为x-4y=0,所以,因此该双曲线的虚轴长为,故选:C12、B【解析】判断圆心距与两圆半径之和、之差关系即可判断两圆位置关系.【详解】由得圆心坐标为,半径,由得圆心坐标为,半径,∴,,∴,即两圆相交.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据条件将问题转化不等式在上有解,则,由此求解出的取值范围.【详解】因为“”为真命题,所以不等式在上有解,所以,所以,故答案为:.14、【解析】由,求得圆心,再根据圆过原点,求得半径即可.【详解】由,可得,即圆心为,又圆过原点,所以圆的半径,故圆的标准方程为故答案为:【点睛】本题主要考查圆的方程的求法,属于基础题.15、【解析】根据导数的几何意义,结合待定系数法进行求解即可.【详解】设曲线的切点为:,由,所以过该切点的切线斜率为:,于切线方程为:,因此有:,设曲线的切点为:,由,所以过该切点的切线斜率为:,于是切线方程为:,因此有:,因为,,即,因此,故答案为:【点睛】关键点睛:根据导数的几何意义进行求解是解题的关键.16、##【解析】根据题中几何关系,求得点坐标,代入椭圆方程求得齐次式,整理化简即可求得离心率.【详解】根据题意,取点为第一象限的点,过点作的垂线,垂足为,如下所示:因为△为等边三角形,又,故可得则点的坐标为,代入椭圆方程可得:,又,整理得:,即,解得(舍)或.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据椭圆的定义和性质,建立方程求出,即可(2)设的方程为,,,,,设的方程为,,,,,分别联立直线方程和椭圆方程,运用韦达定理和判别式大于0,以及弦长公式,求得,,运用菱形和椭圆的对称性可得,关于原点对称,结合菱形的对角线垂直和向量数量积为0,可得,设菱形的周长为,运用基本不等式,计算可得所求最大值【小问1详解】点在线段的垂直平分线上,,又,曲线是以坐标原点为中心,和为焦点,长轴长为的椭圆设曲线的方程为,,,曲线的方程为【小问2详解】设的方程为,,,,,设的方程为,,,,,联立可得,由可得,化简可得,①,,,同理可得,因为四边形为菱形,所以,所以,又因为,所以,所以,关于原点对称,又椭圆关于原点对称,所以,关于原点对称,,也关于原点对称,所以且,所以,,,,因为四边形为菱形,可得,即,即,即,可得,化简可得,设菱形的周长为,则,当且仅当,即时等号成立,此时,满足①,所以菱形的周长的最大值为【点睛】关键点点睛:在处理此类直线与椭圆相交问题中,一般先设出直线方程,联立方程,利用韦达定理得出,,再具体问题具体分析,一般涉及弦长计算问题,运算比较繁琐,需要较强的运算能力,属于难题。18、(1);(2)存在,定圆.【解析】(1)由题可得,,即求;(2)由题可设直线的方程,利用韦达定理及条件可得直线恒过定点,则以为直径的圆适合题意,即得.【小问1详解】由题设知,椭圆上顶点为,且在直线上∴,即又点在椭圆上,∴解得,∴椭圆C的方程为;【小问2详解】设,,当直线斜率存在,设直线为:联立方程,化简得∴,,∵,∴又∵,∴将,代入,化简得,即则或,①当时,直线恒过定点与点重合,不符题意.②当时,直线恒过定点,记为点,∵,∴以为直径,其中点为圆心的圆恒经过两点,则圆方程为:;当直线斜率不存在,设方程为,,,且,,∴,解得或(舍去),,取,以为直径作圆,圆方程为:恒经过两点,综上所述,存在定圆恒经过两点.【点睛】关键点点睛:本题第二问的关键是证明直线恒过定点,结合条件可得以为直径的圆,适合题意即得.19、(1)(2)存在,A1P=【解析】(1)作出线面角,因为对边为定值,所以邻边最小时线面角最大;(2)建立空间直角坐标系,由向量法求二面角列方程可得.【小问1详解】直线PN与平面A1B1C1所成的角即为直线PN与平面ABC所成角,过P作,即PN与面ABC所成的角,因为PH为定值,所以当NH最小时线面角最大,因为当P为中点时,,此时NH最小,即PN与平面ABC所成角最大,此时.【小问2详解】以AB,AC,AA1为x,y,z轴建立空间坐标系,则:A(0,0,0),B(1,0,0),C(0,1,0),A1(0,0,1)设=,,,设平面PMN的法向量为,则,即,解得,平面AC1C的法向量为,.所以P点为A1B1的四等分点,且A1P=.20、(1)(2)【解析】(1)由已知直接可得;(2)联立方程组求出A,两点坐标,再由两点间距离公式可得.【小问1详解】∵椭圆的中心在原点,焦点为,且长轴长为4,,,,故椭圆的方程为;【小问2详解】设,联立解得和,,∴弦长.21、(1)证明见解析;(2)答案见解析;(3).【解析】(1)连结,,由直四棱柱的性质及线面垂直的性质可得,再由正方形的性质及线面垂直的判定、性质即可证结论.(2)选条件①③,设,连结,,由中位线的性质、线面垂直的性质可得、,再由线面垂直的判定证明结论;选条件②③,设,连结,由线面平行的性质及平行推论可得,由线面垂直的性质有,再由线面垂直的判定证明结论;(3)构建空间直角坐标系,求平面、平面的法向量,应用空间向量夹角的坐标表示求平面与平面夹角的余弦值.【小问1详解】连结,,由直四棱柱知:平面,又平面,所以,又为正方形,即,又,∴平面,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二手车整备工安全知识水平考核试卷含答案
- 我国上市公司双重股权制度的法律剖析与优化路径
- 变配电运行值班员岗前前瞻考核试卷含答案
- 电缆金属护套制造工发展趋势竞赛考核试卷含答案
- 燃气储运工岗前工作实操考核试卷含答案
- 白酒原料粉碎工复测模拟考核试卷含答案
- 生活垃圾处理工创新实践竞赛考核试卷含答案
- 2026年消毒供应室三基三严测试试题
- 企业风险管理内部控制制度
- 老年术后患者变异处理的个体化方案
- 2025年安全生产事故年度综合分析报告
- 2026年浦发银行社会招聘参考题库必考题
- 2026年腹腔镜缝合技术培训
- 2026年黑龙江省七台河市高职单招职业适应性测试试题题库(答案+解析)
- 2025-2030戏剧行业市场深度调研及发展趋势与投资战略研究报告
- 2025年CNC编程工程师年度述职
- 护坡施工方案审查(3篇)
- 地铁安检施工方案(3篇)
- 小学生寒假心理健康安全教育
- 钢结构工程全面质量通病图册
- 低空智能-从感知推理迈向群体具身
评论
0/150
提交评论