版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖南省邵东县第十中学高二上数学期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线l:过椭圆的左焦点F,与椭圆在x轴上方的交点为P,Q为线段PF的中点,若,则椭圆的离心率为()A. B.C. D.2.曲线为四叶玫瑰线,这种曲线在苜蓿叶型立交桥的布局中有非常广泛的应用,苜蓿叶型立交桥有两层,将所有原来需要穿越相交道路的转向都由环形匝道来实现,即让左转车辆行驶环道后自右侧切向汇入高速公路,四条环形匝道就形成了苜蓿叶的形状.下列结论正确的个数是()①曲线C关于点(0,0)对称;②曲线C关于直线y=x对称;③曲线C的面积超过4π.A.0 B.1C.2 D.33.在三棱锥中,平面,,,,Q是边上的一动点,且直线与平面所成角的最大值为,则三棱锥的外接球的表面积为()A. B.C. D.4.在空间直角坐标系中,为直线的一个方向向量,为平面的一个法向量,且,则()A. B.C. D.5.下图称为弦图,是我国古代三国时期赵爽为《周髀算经》作注时为证明勾股定理所绘制,我们新教材中利用该图作为“()”的几何解释A.如果,,那么B.如果,那么C.对任意实数和,有,当且仅当时等号成立D.如果,那么6.已知椭圆的左、右焦点分别为,点是椭圆上的一点,点是线段的中点,为坐标原点,若,则()A.3 B.4C.6 D.117.已知圆,直线,直线l被圆O截得的弦长最短为()A. B.C.8 D.98.在等比数列中,,,则()A.2 B.4C.6 D.89.已知点是椭圆上一点,点,则的最小值为A. B.C. D.10.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则()A. B.3C. D.211.甲乙两名运动员在某项体能测试中的6次成绩统计如表:甲9816151514乙7813151722分别表示甲乙两名运动员这项测试成绩的平均数,分别表示甲乙两名运动员这项测试成绩的标准差,则有()A., B.,C., D.,12.如果,那么下列不等式成立的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点P是双曲线右支上的一点,且以点P及焦点为定点的三角形的面积为4,则点P的坐标是_____________14.已知平面向量均为非零向量,且满足,记向量在向量上投影向量为,则k=______.(用数字作答)15.若双曲线的渐近线与圆相切,则该双曲线的实轴长为______16.已知为平面的一个法向量,为直线的方向向量.若,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左、右焦点分别为,,离心率为,过的直线与椭圆交于,两点,若的周长为8.(1)求椭圆的标准方程;(2)设为椭圆上的动点,过原点作直线与椭圆分别交于点、(点不在直线上),求面积的最大值.18.(12分)已知圆M的圆心在直线上,且圆心在第一象限,半径为3,圆M被直线截得的弦长为4.(1)求圆M的方程;(2)设P是直线上的动点,证明:以MP为直径的圆必过定点,并求所有定点的坐标.19.(12分)已知椭圆C与椭圆有相同的焦点,且长轴长为4(1)求C的标准方程;(2)直线,分别经过点与C相切,切点分别为A,B,证明:20.(12分)已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点在椭圆上(1)经过点M(1,)作一直线交椭圆于AB两点,若点M为线段AB的中点,求直线的斜率;(2)设椭圆C的上顶点为P,设不经过点P的直线与椭圆C交于C,D两点,且,求证:直线过定点21.(12分)在棱长为4的正方体中,点分别在线段上,点在线段延长线上,,,连接交线段于点.(1)求证平面;(2)求异面直线所成角的余弦值.22.(10分)已知定点,动点与连线的斜率之积.(1)设动点的轨迹为,求的方程;(2)若是上关于轴对称的两个不同点,直线与轴分别交于点.试判断以为直径的圆是否过定点,如经过,求出定点坐标;如不过定点,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由直线的倾斜角为,可得,结合,可推得是等边三角形,可得,计算可得离心率【详解】直线:过椭圆的左焦点,设椭圆的右焦点为,所以,又是的中点,是的中点,所以,又,所以,又,所以是等边三角形,所以,又在椭圆上,所以,所以,所以离心率为,故选:2、C【解析】根据图像或解析式即可判断对称性①②;估算第一象限内图像面积即可判断③.【详解】①将点(-x,-y)代入后依然为,故曲线C关于原点对称;②将点(y,x)代入后依然为,故曲线C关于y=x对称;③曲线C在四个象限的图像是完全相同的,不妨只研究第一象限的部分,∵,∴曲线C上离原点最远的点的距离为显然第一象限内曲线C的面积小于以为直径的圆的面积,又∵,∴第一象限内曲线C的面积小于,则曲线C的总面积小于4π.故③错误.故选:C.3、C【解析】由平面,直线与平面所成角的最大时,最小,也即最小,,由此可求得,从而得,得长,然后取外心,作,取H为的中点,使得,则易得,求出的长即为外接球半径,从而可得面积【详解】三棱锥中,平面,直线与平面所成角为,如图所示;则,且的最大值是,,的最小值是,即A到的距离为,,,在中可得,又,,可得;取的外接圆圆心为,作,取H为的中点,使得,则易得,由,解得,,,,由勾股定理得,所以三棱锥的外接球的表面积是.【点睛】本题考查求球的表面积,解题关键是确定球的球心,三棱锥的外接球心在过各面外心且与此面垂直的直线上4、B【解析】由已知条件得出,结合空间向量数量积的坐标运算可求得实数的值.【详解】因为,则,解得.故选:B.5、C【解析】设图中直角三角形边长分别为a,b,则斜边为,则可表示出阴影面积和正方形面积,根据图象关系,可得即可得答案.【详解】设图中全等的直角三角形的边长分别为a,b,则斜边为,如图所示:则四个直角三角形的面积为,正方形的面积为,由图象可得,四个直角三角形面积之和小于等于正方形的面积,所以,当且仅当时等号成立,所以对任意实数和,有,当且仅当时等号成立.故选:C6、A【解析】利用椭圆的定义可得,再结合条件即求.【详解】由椭圆的定义可知,因为,所以,因为点分别是线段,的中点,所以是的中位线,所以.故选:A.7、B【解析】先求得直线过定点,再根据当点与圆心连线垂直于直线l时,被圆O截得的弦长最短求解.【详解】因为直线方程,即为,所以直线过定点,因为点在圆的内部,当点与圆心连线垂直于直线l时,被圆O截得的弦长最短,点与圆心(0,0)的距离为,此时,最短弦长为,故选:B8、D【解析】由等比中项转化得,可得,求解基本量,由等比数列通项公式即得解【详解】设公比为,则由,得,即故,解得故选:D9、D【解析】设,则,.所以当时,的最小值为.故选D.10、D【解析】根据抛物线的定义求得,由此求得的长.【详解】过作,垂足为,设与轴交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【点睛】本小题主要考查抛物线定义,考查数形结合的数学思想方法,属于基础题.11、B【解析】根据给定统计表计算、,再比较、大小判断作答.【详解】依题意,,,,,所以,.故选:B12、D【解析】利用不等式的性质分析判断每个选项.【详解】由不等式的性质可知,因为,所以,,故A错误,D正确;由,可得,,故B,C错误.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题可得P到x轴的距离为1,把代入,得,可得P点坐标【详解】设,由题意知,所以,则,由题意可得,把代入,得,所以P点坐标为故答案为:14、##1.5【解析】由两边平方可得,,,设,向量是以向量为邻边的平行四边形、有共同起点的对角线,,由余弦定理可得,向量在向量上投影向量为,化简可得答案.【详解】因为,所以,,两边平方整理得,,两边平方整理得,即,可得,,设,所以向量是以向量为邻边的平行四边形、有共同起点的对角线,如图,即,因为,,平行四边形即为的菱形,所以,由余弦定理可得,可得,,向量在向量上投影向量为,即.故答案为:.15、【解析】由双曲线方程写出渐近线,根据相切关系,结合点线距离公式求参数a,即可确定实轴长.【详解】由题设,渐近线方程为,且圆心为,半径为1,所以,由相切关系知:,可得,又,即,所以双曲线的实轴长为.故答案为:16、##【解析】根据线面平行列方程,化简求得的值.【详解】由于,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据周长可求,再根据离心率可求,求出后可求椭圆的方程.(2)当直线轴时,计算可得的面积的最大值为,直线不垂直轴时,可设,联立直线方程和椭圆方程可求,设与平行且与椭圆相切的直线为:,结合椭圆方程可求的关系,从而求出该直线到直线的距离,从而可求的面积的最大值为.【详解】(1)由椭圆的定义可知,的周长为,∴,,又离心率为,∴,,所以椭圆方程为.(2)当直线轴时,;当直线不垂直轴时,设,,,∴.设与平行且与椭圆相切的直线为:,,∵,∴,∴距的最大距离为,∴,综上,面积的最大值为.【点睛】方法点睛:求椭圆的标准方程,关键是基本量的确定,而面积的最值的计算,则可以转化为与已知直线平行且与椭圆相切的直线与已知直线的距离来计算,此类转化为面积最值计算过程的常规转化.18、(1);(2)证明见解析,定点和.【解析】(1)根据给定条件设出圆心坐标,再结合点到直线距离公式计算作答.(2)设点,求出圆的方程,结合方程求出其定点.【小问1详解】因圆M的圆心在直线上,且圆心在第一象限,设圆心,且,圆心到直线的距离为,又由解得,从而,而,解得,所以圆M的方程为.【小问2详解】由(1)知:,设点,,设动圆上任意一点当与点P,M都不重合时,,有,当与点P,M之一重合时,对应为零向量,也成立,,,,化简得:,由,解得或,所以以MP为直径的圆必过定点和.【点睛】方法点睛:待定系数法求圆的方程,由题设条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式19、(1);(2)证明见解析.【解析】(1)根据共焦点求出参数c,由长轴长求参数a,即可确定C的标准方程;(2)令过切线为,联立椭圆C结合得到关于k的一元二次方程,根据根与系数关系即可证明结论.【小问1详解】由题设,对于椭圆C有,又椭圆的焦点为,则,所以,故C的标准方程.【小问2详解】由题设,直线,的斜率必存在,令椭圆C的切线方程为,联立椭圆方程并整理可得:,由相切关系知:,整理得:,所以,即直线,相互垂直,则.20、(1);(2)证明见解析.【解析】(1)设椭圆的方程为代入点的坐标求出椭圆的方程,再利用点差法求解;(2)由题得直线的斜率存在,设直线的方程为,联立直线和椭圆的方程得韦达定理,根据和韦达定理得到,即得证.【小问1详解】解:由题设椭圆的方程为因为椭圆经过点,所以所以椭圆的方程为.设,所以,所以,由题得,所以,所以,所以,所以直线的斜率为.【小问2详解】解:由题得当直线的斜率不存在时,不符合题意;当直线的斜率存在时,设直线的方程为,联立方程组y=kx+nx24所以,解得①,设,,,,则②,因为,则,,,又,,所以③,由②③可得(舍或满足条件①,此时直线的方程为,故直线过定点21、(1)证明见解析(2)【解析】(1)由线面平行的判定定理证明;(2)建立空间直角坐标系,用空间向量法求异面直线所成的角【小问1详解】证明:且,由三角形相似可得,,,又,,又平面,平面平面;【小问2详解】解:以为坐标原点,分别以为轴建立空间坐标系,如图.则设异面直线所成角为,则22、(1);(2)以为直径的圆过定点,定点坐标为和.【解析】(1)设动点的坐标,利用斜率坐标公式结合已知列式即可作答.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 成语考试真题及答案
- bim应用案例分析考试题库及答案
- 疑难病例讨论制度题库(含答案)
- 技术研发经理招聘笔试题及解答(某世界500强集团)附答案
- 人文考试试题附答案详解
- 医院感染知识竞赛试题(附答案)
- 装配钳工高级模拟试题含参考答案
- 2025年主管护师考试试题与答案
- 保险公估人考试真题题库及答案
- 广东初中升学试题及答案
- 2026中国国际航空招聘面试题及答案
- (2025年)工会考试附有答案
- 2026年国家电投集团贵州金元股份有限公司招聘备考题库完整参考答案详解
- 复工复产安全知识试题及答案
- 中燃鲁西经管集团招聘笔试题库2026
- 资产接收协议书模板
- 华润燃气2026届校园招聘“菁英计划·管培生”全面开启备考考试题库及答案解析
- 数据中心合作运营方案
- 印铁涂料基础知识
- 工资欠款还款协议书
- GB/T 12719-2021矿区水文地质工程地质勘查规范
评论
0/150
提交评论