版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省安阳一中2026届高二上数学期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆和圆恰有三条公共切线,则的最小值为()A.6 B.36C.10 D.2.已知是抛物线上的点,F是抛物线C的焦点,若,则()A1011 B.2020C.2021 D.20223.与向量平行,且经过点的直线方程为()A. B.C. D.4.已知直线l与抛物线交于不同的两点A,B,O为坐标原点,若直线的斜率之积为,则直线l恒过定点()A. B.C. D.5.等比数列满足,,则()A.11 B.C.9 D.6.已知函数满足对于恒成立,设则下列不等关系正确是()A. B.C. D.7.设函数在定义域内可导,的图象如图所示,则导函数的图象可能为()A. B.C. D.8.某几何体的三视图如图所示,则其对应的几何体是A. B.C. D.9.过点且与直线垂直的直线方程是()A. B.C. D.10.已知圆,为圆外的任意一点,过点引圆的两条切线、,使得,其中、为切点.在点运动的过程中,线段所扫过图形的面积为()A. B.C. D.11.为了解一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:㎝).根据所得数据画出的样本频率分布直方图如图,那么在这片树木中,底部周长小于110㎝的株树大约是()A.3000 B.6000C.7000 D.800012.已知圆,过点P的直线l被圆C所截,且截得最长弦的长度与最短弦的长度比值为5∶4,若O为坐标原点,则最大值为()A.3 B.4C.5 D.6二、填空题:本题共4小题,每小题5分,共20分。13.已知曲线在点处的切线的斜率为,则______14.某几何体的三视图如图所示,则该几何体的体积为______.15.已知函数,若在上是增函数,则实数的取值范围是________16.在2021件产品中有10件次品,任意抽取3件,则抽到次品个数的数学期望的值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知焦点为F的抛物线上一点到F的距离是4(1)求抛物线C的方程(2)若不过原点O的直线l与抛物线C交于A,B两点(A,B位于x轴两侧),C的准线与x轴交于点E,直线与分别交于点M,N,若,证明:直线l过定点18.(12分)已知抛物线的焦点与双曲线的右焦点重合,双曲线E的渐近线方程为(1)求抛物线C的标准方程和双曲线E的标准方程;(2)若O是坐标原点,直线与抛物线C交于A,B两点,求的面积19.(12分)如图,四边形是矩形,平面平面,为中点,,,(1)证明:平面平面;(2)求二面角的余弦值20.(12分)已知E,F分别是正方体的棱BC和CD的中点(1)求与所成角的大小;(2)求与平面所成角的余弦值21.(12分)已知定圆,过的一条动直线与圆相交于、两点,(1)当与定直线垂直时,求出与的交点的坐标,并证明过圆心;(2)当时,求直线的方程22.(10分)2017年国家提出乡村振兴战略目标:2020年取得重要进展,制度框架和政策体系基本形成;2035年取得决定性进展,农业农村现代化基本实现;2050年乡村全面振兴,农业强、农村美、农民富全面实现.某地为实现乡村振兴,对某农产品加工企业调研得到该企业2012年到2020年盈利情况:年份201220132014201520162017201820192020年份代码x123456789盈利y(百万)6.06.16.26.06.46.96.87.17.0(1)根据表中数据判断年盈利y与年份代码x是否具有线性相关性;(2)若年盈利y与年份代码x具有线性相关性,求出线性回归方程并根据所求方程预测该企业2021年年盈利(结果保留两位小数)参考数据及公式:,,,,,统计中用相关系数r来衡量变量y,x之间的线性关系的强弱,当时,变量y,x线性相关
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由公切线条数得两圆外切,由此可得的关系,从而点在以原点为圆心,4为半径的圆上,记,由求得的最小值,平方后即得结论【详解】圆标准方程为,,半径为,圆标准方程为,,半径为,两圆有三条公切线,则两圆外切,所以,即,点在以原点为圆心,4为半径的圆上,记,,所以,所以的最小值为故选:B2、C【解析】结合向量坐标运算以及抛物线的定义求得正确答案.【详解】设,因为是抛物线上的点,F是抛物线C的焦点,所以,准线为:,因此,所以,即,由抛物线的定义可得,所以故选:C3、A【解析】利用点斜式求得直线方程.【详解】依题意可知,所求直线的斜率为,所以所求直线方程为,即.故选:A4、A【解析】设出直线方程,联立抛物线方程,得到,进而得到的值,将直线的斜率之积为,用A,B点坐标表示出来,结合的值即可求得答案.【详解】设直线方程为,联立,整理得:,需满足,即,则,由,得:,所以,即,故,所以直线l为:,当时,,即直线l恒过定点,故选:A.5、B【解析】由已知结合等比数列的性质即可求解.【详解】由数列是等比数列,得:,故选:B6、A【解析】由条件可得函数为上的增函数,构造函数,利用函数单调性比较的大小,再根据函数的单调性确定各选项的对错.【详解】设,则,∵,∴,∴函数在上为增函数,∵,∴,故,所以,C错,令(),则,当时,,当时,∴函数在区间上为增函数,在区间上为减函数,又,∴,∴,即,∴,故,所以,D错,,故,所以,A对,,故,所以,B错,故选:A.7、D【解析】根据的图象可得的单调性,从而得到在相应范围上的符号和极值点,据此可判断的图象.【详解】由的图象可知,在上为增函数,且在上存在正数,使得在上为增函数,在为减函数,故在有两个不同的零点,且在这两个零点的附近,有变化,故排除A,B.由在上为增函数可得在上恒成立,故排除C.故选:D.【点睛】本题考查导函数图象的识别,此类问题应根据原函数的单调性来考虑导函数的符号与零点情况,本题属于基础题.8、A【解析】根据三视图即可还原几何体.【详解】根据三视图,特别注意到三视图中对角线的位置关系,容易判断A正确.【点睛】本题主要考查了三视图,属于中档题.9、C【解析】根据两直线垂直时斜率乘积为,可以直接求出所求直线的斜率,再根据点斜式求出直线方程,最后化成一般式方程即可.【详解】因为直线的斜率为,故所求直线的斜率等于,所求直线的方程为,即,故选:C10、D【解析】连接、、,分析可知四边形为正方形,求出点的轨迹方程,分析可知线段所扫过图形为是夹在圆和圆的圆环,利用圆的面积公式可求得结果.【详解】连接、、,由圆的几何性质可知,,又因为且,故四边形为正方形,圆心,半径为,则,故点的轨迹方程为,所以,线段扫过的图形是夹在圆和圆的圆环,故在点运动的过程中,线段所扫过图形的面积为.故选:D.11、C【解析】先由频率分布直方图得到抽取的样本中底部周长小于110㎝的概率,进而可求出结果.【详解】由频率分布直方图可得,样本中底部周长小于110㎝的概率为,因此在这片树木中,底部周长小于110㎝的株树大约是.故选:C.【点睛】本题主要考查频率分布直方图的应用,属于基础题型.12、C【解析】由题意,点P在圆C内,且最长弦的长度为直径长10,则最短弦的长度为8,进而可得,所以点P的轨迹为以C为圆心,半径为3的圆,从而即可求解.【详解】解:由题意,圆,所以圆C是以为圆心,半径为5的圆,因为过点P的直线l被圆C所截,且截得最长弦的长度与最短弦的长度比值为5∶4,所以点P在圆C内,且最长弦的长度为直径长10,则最短弦的长度为8,所以由弦长公式有,所以点P的轨迹为以C为圆心,半径为3的圆,所以,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】对求导,根据题设有且,即可得目标式的值.【详解】由题设,且定义域为,则,所以,整理得,又,所以,两边取对数有,得:,即.故答案为:.14、【解析】根据三视图还原几何体,由此计算出几何体的体积.【详解】根据三视图可知,该几何体为如图所示三棱锥,所以该几何体的体积为.故答案为:15、【解析】根据函数在上是增函数,分段函数在整个定义域内单调,则在每个函数内单调,注意衔接点的函数值.【详解】解:因为函数在上是增函数,所以在区间上是增函数且在区间上也是增函数,对于函数在上是增函数,则;①对于函数,(1)当时,,外函数为定义域内的减函数,内函数在上是增函数,根据复合函数“同增异减”可得时函数在区间上是减函数,不符合题意,故舍去,(2)当时,外函数为定义域内的增函数,要使函数在区间上是增函数,则内函数在上也是增函数,且对数函数真数大于0,即在上也要恒成立,所以,又,所以,②又在上是增函数则在衔接点处函数值应满足:,化简得,③由①②③得,,所以实数的取值范围是.故答案为:.【点睛】方法点睛:利用单调性求参数方法如下:(1)依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;(2)需注意若函数在区间上是单调的,则该函数在此区间的任意子集上也是单调的;(3)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值16、【解析】设抽到的次品的个数为,则,求出对应的概率即得解.【详解】解:设抽到的次品的个数为,则,所以所以抽到次品个数的数学期望的值是故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明过程见解析.【解析】(1)利用抛物线的定义进行求解即可;(2)设出直线l的方程,与抛物线方程联立,根据一元二次方程的根与系数关系进行求解证明即可.【小问1详解】该抛物线的准线方程为,因为点到F的距离是4,所以有,所以抛物线C的方程为:;【小问2详解】该抛物线的准线方程为,设直线l的方程为:,与抛物线方程联立,得,不妨设,因此,直线的斜率为:,所以方程为:,当时,,即,同理,因为,所以有,而,所以有,所以直线l的方程为:,因此直线l恒过.【点睛】关键点睛:把直线l的方程为:,利用一元二次方程根与系数关系是解题的关键.18、(1);(2)【解析】(1)由双曲线的渐近线方程为,可得,继而得到双曲线的右焦点为,即为抛物线的焦点坐标,可得,即得解;(2)联立直线与抛物线,可得,再由直线过抛物线的焦点,故,三角形的高为O到直线的距离,利用点到直线公式,求解即可【小问1详解】由题意,双曲线渐近线方程为:,所以,所以双曲线E的标准方程为:故双曲线故双曲线的右焦点为,所以,,所以【小问2详解】由题意联立,得,又所以因为直线过抛物线的焦点,所以O到直线的距离,19、(1)证明见解析;(2)【解析】(1)利用面面垂直的性质,证得平面,进而可得,平面即可得证;(2)在平面ABC内过点A作Ax⊥AB,以A为原点建立空间直角坐标系,借助空间向量而得解.【详解】(1)因为,为中点,所以,因为是矩形,所以,因为平面平面,平面平面,平面,所以平面,因为平面,所以,又,平面,,所以平面,又平面,所以平面平面;(2)在平面ABC内过点A作Ax⊥AB,由(1)知,平面,故以点A为坐标原点,分别以,,的方向为轴,轴,轴的正方向,建立空间直角坐标系,如图:则,,,,,则,所以,,,,由(1)知,为平面的一个法向量,设平面的法向量为,则,即,令,则,,所以,所以,因为二面角为锐角,则二面角的余弦值为.【点睛】思路点睛:二面角大小求解时要注意结合实际图形判断所求角是锐角还是钝角20、(1)60°;(2).【解析】(1)建立空间直角坐标系,利用空间向量夹角的坐标公式即可求出异面直线所成角的余弦值,进而结合异面直线成角的范围即可求出结果;(2)建立空间直角坐标系,利用空间向量夹角的坐标公式即可求出求出线面角的正弦值,进而结合线面角的范围即可求出结果;【小问1详解】以AB,AD,所在直线分别为x,y,z轴建立如图所示的空间直角坐标系,设正方体的棱长为,则,,,,所以,,设与EF所成角的大小为,则,因为异面直线成角的范围是,所以与所成角的大小为60°【小问2详解】设平面的法向量为,与平面所成角为,因为,,所以,,所以,令,得为平面的一个法向量,又因为,所以,所以21、(1),证明见解析;(2)或.【解析】(1)根据题意可设直线的方程为,将点的坐标代入直线的方程,可求得的值,再将直线、的方程联立,可得出这两条直线的交点的坐标,将圆心的坐标代入直线的方程可证得结论成立;(2)利用勾股定理可求得圆心到直线的距离,对直线的斜率是否存在进行分类讨论,设出直线方程,利用点到直线的距离公式求出参数的值,即可得出直线的方程.【小问1详解】解:当直线与定直线垂直时,可设直线的方程为,将点的坐标代入直线的方程可得,则,此时,直线的方程为,联
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 24504-2025煤层气井注入/压降试井方法
- 消化内科患者的家庭护理支持
- 麻醉科规培试题及答案
- 新三板题库及答案
- 儿科基础护理知识试题及答案
- 财税应用师考试题及答案
- 机构考试题及答案
- 医学影像技术模考试题(附参考答案)
- 一级蚂蚁知识竞赛题及答案
- 结构与设计试题及答案
- 医疗卫生舆情课件模板
- 高压注浆施工方案(3篇)
- 高强混凝土知识培训课件
- (高清版)DB11∕T 1455-2025 电动汽车充电基础设施规划设计标准
- 暖通工程施工环保措施
- 宗族团年活动方案
- 2025至2030中国碳纳米管行业市场发展分析及风险与对策报告
- 车企核心用户(KOC)分层运营指南
- 儿童课件小学生讲绘本成语故事《69狐假虎威》课件
- 湖北中烟2025年招聘综合测试
- 不锈钢管道酸洗钝化方案
评论
0/150
提交评论