江西省抚州市崇仁县第二中学2026届高二上数学期末质量跟踪监视模拟试题含解析_第1页
江西省抚州市崇仁县第二中学2026届高二上数学期末质量跟踪监视模拟试题含解析_第2页
江西省抚州市崇仁县第二中学2026届高二上数学期末质量跟踪监视模拟试题含解析_第3页
江西省抚州市崇仁县第二中学2026届高二上数学期末质量跟踪监视模拟试题含解析_第4页
江西省抚州市崇仁县第二中学2026届高二上数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省抚州市崇仁县第二中学2026届高二上数学期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知定义域为R的函数f(x)不是偶函数,则下列命题一定为真命题的是()A.∀x∈R,f(-x)≠f(x)B.∀x∈R,f(-x)≠-f(x)C∃x0∈R,f(-x0)≠f(x0)D.∃x0∈R,f(-x0)≠-f(x0)2.已知双曲线C的离心率为,,是C的两个焦点,P为C上一点,,若△的面积为,则双曲线C的实轴长为()A.1 B.2C.4 D.63.已知两个向量,若,则的值为()A. B.C.2 D.84.我们通常称离心率是的椭圆为“黄金椭圆”.如图,已知椭圆,,,,分别为左、右、上、下顶点,,分别为左、右焦点,为椭圆上一点,下列条件中能使椭圆为“黄金椭圆”的是()A. B.C.轴,且 D.四边形的一个内角为5.已知实数,,则下列不等式恒成立的是()A. B.C. D.6.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组可能性相同,则这两位同学参加同一个兴趣小组的概率为A. B.C. D.7.已知点P是圆上一点,则点P到直线的距离的最大值为()A.2 B.C. D.8.下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则9.抛物线的焦点到准线的距离是A. B.1C. D.10.已知圆与圆,则圆M与圆N的位置关系是()A.内含 B.相交C.外切 D.外离11.下列直线中,倾斜角最大的为()A. B.C. D.12.在空间直角坐标系中,若,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点,抛物线的焦点为,点是抛物线上任意一点,则周长的最小值是__________.14.已知、是椭圆的两个焦点,点在椭圆上,且,,则椭圆离心率是___________15.过点作圆的切线,则切线方程为______.16.如图所示,高尔顿钉板是一个关于概率的模型,每一黑点表示钉在板上的一颗钉子,它们彼此的距离均相等,上一层的每一颗的水平位置恰好位于下一层的两颗正中间.小球每次下落时,将随机的向两边等概率的落下.当有大量的小球都落下时,最终在钉板下面不同位置收集到小球.现有5个小球从正上方落下,则恰有3个小球落到2号位置的概率是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在平面直角坐标系xOy中,已知抛物线C:y2=4x经过点A(1,2),直线l:y=kx+b与抛物线C交于M,N两点.(1)若,求直线l的方程;(2)当AM⊥AN时,若对任意满足条件的实数k,都有b=mk+n(m,n为常数),求m+2n的值.18.(12分)《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,其中第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:参考公式:,月份12345违章驾驶员人数1201051009580(1)请利用所给数据求违章人数y与月份x之间的回归直线方程;(2)预测该路口10月份的不“礼让斑马线”违章驾驶员人数;19.(12分)已知直线和的交点为P,求:(1)过点P且与直线垂直的直线l的方程;(2)以点P为圆心,且与直线相交所得弦长为12的圆的方程;(3)从下面①②两个问题中选一个作答,①若直线l过点,且与两坐标轴的正半轴所围成的三角形面积为,求直线l的方程②求圆心在直线上,与x轴相切,被直线截得的弦长的圆的方程注:如果选择两个问题分别作答,按第一个计分20.(12分)已知两个定点,,动点满足,设动点的轨迹为曲线,直线:(1)求曲线的轨迹方程;(2)若与曲线交于不同的、两点,且(为坐标原点),求直线的斜率;21.(12分)已知抛物线的焦点为F,点是抛物线上的点,且.(1)求抛物线方程;(2)直线与抛物线交于、两点,且.求△OPQ面积的最小值.22.(10分)在平面直角坐标系中,已知点.点M满足.记M的轨迹为C.(1)求C的方程;(2)直线l经过点,与轨迹C分别交于点M、N,与直线交于点Q,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用偶函数的定义和全称命题的否定分析判断解答.【详解】∵定义域为R的函数f(x)不是偶函数,∴∀x∈R,f(-x)=f(x)为假命题,∴∃x0∈R,f(-x0)≠f(x0)为真命题.故选C【点睛】本题主要考查偶函数的定义和全称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题.2、C【解析】由已知条件可得,,,再由余弦定理得,进而求其正弦值,最后利用三角形面积公式列方程求参数a,即可知双曲线C的实轴长.【详解】由题意知,点P在右支上,则,又,∴,,又,∴,则在△中,,∴,故,解得,∴实轴长为,故选:C.3、B【解析】直接利用空间向量垂直的坐标运算计算即可.【详解】因为,所以,即,解得.故选:B4、B【解析】先求出椭圆的顶点和焦点坐标,对于A,根据椭圆的基本性质求出离心率判断A;对于B,根据勾股定理以及离心率公式判断B;根据结合斜率公式以及离心率公式判断C;由四边形的一个内角为,即即三角形是等边三角形,得到,结合离心率公式判断D.【详解】∵椭圆∴对于A,若,则,∴,∴,不满足条件,故A不符合条件;对于B,,∴∴,∴∴,解得或(舍去),故B符合条件;对于C,轴,且,∴∵∴,解得∵,∴∴,不满足题意,故C不符合条件;对于D,四边形的一个内角为,即即三角形是等边三角形,∴∴,解得∴,故D不符合条件故选:B【点睛】本题主要考查了求椭圆离心率,涉及了勾股定理,斜率公式等的应用,充分利用建立的等式是解题关键.5、C【解析】根据不等式性质和作差法判断大小依次判断每个选项得到答案.【详解】当时,不等式不成立,错误;,故错误正确;当时,不等式不成立,错误;故选:.【点睛】本题考查了不等式的性质,作差法判断大小,意在考查学生对于不等式知识的综合应用.6、A【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=选A7、C【解析】求出圆心到直线的距离,由这个距离加上半径即得【详解】由圆,可得圆心坐标,半径,则圆心C到直线的距离为,所以点P到直线l的距离的最大值为.故选:C8、C【解析】先举例说明ABD不成立,再根据不等式性质说明C成立.【详解】当时,满足,但不成立,所以A错;当时,满足,但不成立,所以B错;当时,满足,但不成立,所以D错;因为所以,又,因此同向不等式相加得,即C对;故选:C【点睛】本题考查不等式性质,考查基本分析判断能力,属基础题.9、D【解析】,,所以抛物线的焦点到其准线的距离是,故选D.10、B【解析】将两圆方程化为标准方程形式,计算圆心距,和两圆半径的和差比较,可得答案,【详解】圆,即,圆心,圆,即,圆心,则故有,所以两圆是相交的关系,故选:B11、D【解析】首先分别求直线的斜率,再结合直线倾斜角与斜率的关系,即可判断选项.【详解】A.直线的斜率;B.直线的斜率;C.直线的斜率;D.直线的斜率,因为,结合直线的斜率与倾斜角的关系,可知直线的倾斜角最大.故选:D12、B【解析】直接利用空间向量的坐标运算求解.【详解】解:因为,,所以.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】利用抛物线的定义结合图形即得.【详解】抛物线的焦点为,准线的方程为,过点作,垂足为,则,所以的周长为,当且仅当三点共线时等号成立.故答案为:.14、【解析】先由,根据椭圆的定义,求出,,再由余弦定理,根据,即可列式求出离心率.【详解】因为点在椭圆上,所以,又,所以,因,在中,由,根据余弦定理可得,解得(负值舍去)故答案为:.【点睛】本题主要考查求椭圆的离心率,属于常考题型.15、【解析】求出切点与圆心连线的斜率后可得切线方程.【详解】因为点在圆上,故切线必垂直于切点与圆心连线,而切点与圆心连线的斜率为,故切线的斜率为,故切线方程为:即.故答案为:.16、【解析】先研究一个小球从正上方落下的情况,从而可求出一个小球从正上方落下落到2号位置的概率,进而可求出5个小球从正上方落下,则恰有3个小球落到2号位置的概率【详解】如图所示,先研究一个小球从正上方落下的情况,11,12,13,14指小球第2层到第3层的线路图,以此类推,小球所有的路线情况如下:01-11-21-31,01-11-21-32,01-11-22-33,01-11-22-34,01-12-23-33,01-12-23-34,01-12-24-35,01-12-24-36,02-14-26-38,02-14-26-37,02-14-25-35,02-14-25-36,02-13-24-36,02-13-24-35,02-13-23-34,02-13-23-33,共16种情况,其中落入2号位置的有4种,所以每个球落入2号位置的概率为,所以5个小球从正上方落下,则恰有3个小球落到2号位置的概率为,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)3或【解析】(1)由可得,则可得直线为,设,然后将直线方程代入抛物线方程中消去,再利用根与系数的关系,由可得,三个式子结合可求出,从而可得直线方程,(2)将直线方程代入抛物线方程中消去,再利用根与系数的关系表示出,再结合直线方程表示出,由AM⊥AN可得,化简结合前面的式子可求出或,从而可可求出的值,进而可求得答案【小问1详解】因为A(1,2),,所以,则直线为,设,由,得,由,得则,因为,所以,所以,所以,所以,解得,所以直线的方程为,即,【小问2详解】设,由,得,由,得,则,所以,,因为AM⊥AN,所以,所以,即,所以,所以,所以或,所以或,所以或18、(1);(2)37【解析】(1)将题干数据代入公式求出与,进而求出回归直线方程;(2)再第一问的基础上代入求出结果.【小问1详解】,,则,,所以回归直线方程;【小问2详解】令得:,故该路口10月份的不“礼让斑马线”违章驾驶员人数为37.19、(1)(2)(3)答案见解析【解析】(1)联立方程组求得交点的坐标,结合直线与直线垂直,求得直线的斜率为,利用直线的点斜式,即可求解;(2)先求得点到直线的距离为,由圆的的垂径定理列出方程求得圆的半径,即可求解;(3)若选①:设直线l的的斜率为,得到,结合题意列出方程,求得的值,即可求解;若选②,设所求圆的圆心为,半径为,得到,利用圆的垂径定理列出方程求得的值,即可求解.【小问1详解】解:由直线和的交点为P,联立方程组,解得,即,因为直线与直线垂直,所以直线的斜率为,所以过点且与直线垂直的直线方程为,即.【小问2详解】解:因为点到直线的距离为,设所求圆的半径为,由圆的的垂径定理得,弦长,解得,所以所求圆的方程为.【小问3详解】解:若选①:直线l过点,且与两坐标轴的正半轴所围成的三角形面积为,设直线l的的斜率为,可得直线的方程为,即,则直线与坐标轴的交点分别为,由,解得或,所以所求直线的方程为或.若选②,设所求圆的圆心为,半径为,因为圆与x轴相切,可得,又由圆心到直线的距离为,利用圆的垂径定理可得,即,解得,即圆心坐标为或,所以所求圆的方程为或.20、(1);(2)【解析】(1)设点的坐标为,由,结合两点间的距离公式,列出式子,可求出轨迹方程;(2)易知,且,可求出到直线的距离,结合点到直线的距离为,可求出直线的斜率【详解】(1)设点的坐标为,由,可得,整理得,所以所求曲线的轨迹方程为(2)依题意,,且,在△中,,取的中点,连结,则,所以,即点到直线:的距离为,解得,所以所求直线斜率为【点睛】本题考查轨迹方程,考查直线的斜率,考查两点间的距离公式、点到直线的距离公式的应用,考查学生的计算求解能力,属于基础题.21、(1);(2).【解析】(1)根据抛物线的定义列方程,由此求得,进而求得抛物线方程.(2)联立直线的方程和抛物线方程,写出根与系数关系,结合求得的值,求得三角形面积的表达式,进而求得面积的最小值.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论