版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥市众兴中学2026届高一数学第一学期期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数f(x)=若f(f(0))=4a,则实数a等于A. B.C.2 D.92.“四边形是菱形”是“四边形是平行四边形”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.终边在y轴上的角的集合不能表示成A. B.C. D.4.函数是奇函数,则的值为A.0 B.1C.-1 D.不存在5.设函数f(x)=asinx+bcosx,其中a,b∈R,ab≠0,若f(x)≥f()对一切x∈R恒成立,则下列结论中正确的是()A.B.点是函数的一个对称中心C.在上是增函数D.存在直线经过点且与函数的图象有无数多个交点6.“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.设函数,则下列函数中为奇函数的是()A. B.C. D.8.已知函数且,则实数的范围()A. B.C. D.9.已知为偶函数,当时,,当时,,则满足不等式的整数的个数为()A.4 B.6C.8 D.1010.已知函数在区间上单调递增,若成立,则实数的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的终边过点,则______12.已知幂函数为奇函数,则___________.13.函数,的图象恒过定点P,则P点的坐标是_____.14.若函数关于对称,则常数的最大负值为________15.已知一容器中有两种菌,且在任何时刻两种菌的个数乘积为定值,为了简单起见,科学家用来记录菌个数的资料,其中为菌的个数,现有以下几种说法:①;②若今天值比昨天的值增加1,则今天的A菌个数比昨天的A菌个数多10;③假设科学家将B菌的个数控制为5万,则此时(注:)则正确的说法为________.(写出所有正确说法的序号)16.已知函数,则函数零点的个数为_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数fx(1)求fx定义域;(2)判断函数fx(3)若fx≤log2mx+5对于18.已知函数的定义域是,设(1)求解析式及定义域;(2)若,求函数的最大值和最小值19.已知,,求,的值;求的值20.已知函数,.(1)运用五点作图法在所给坐标系内作出在内的图像(画在答题卡上);(2)求函数的对称轴,对称中心和单调递增区间.21.已知定义域为的函数是奇函数.(1)求的值;(2)用函数单调性的定义证明在上是减函数.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】,选C.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.2、A【解析】由菱形和平行四边形的定义可判断.【详解】解:四边形是菱形则四边形是平行四边形,反之,若四边形是平行四边形则四边形不一定是菱形,所以“四边形是菱形”是“四边形是平行四边形”充分不必要条件.故选:A.3、B【解析】分别写出终边落在y轴正半轴和负半轴上的角的集合,然后进行分析运算即可得解.【详解】终边落在y轴正半轴上的角的集合为:,终边落在y轴负半轴上的角的集合为:,故终边在y轴上的角的集合可表示成为,故A选项可以表示;将与取并集为:,故C选项可以表示;将与取并集为:,故终边在y轴上的角的集合可表示成为,故D选项可以表示;对于B选项,当时,或,显然不是终边落在y轴上的角;综上,B选项不能表示,满足题意.故选:B.【点睛】本题考查轴线角的定义,侧重对基础知识的理解的应用,考查逻辑思维能力和分析运算能力,属于常考题.4、C【解析】由题意得,函数是奇函数,则,即,解得,故选C.考点:函数的奇偶性的应用.5、D【解析】根据f(x)≥f()对一切x∈R恒成立,那么x=取得最小值.结合周期判断各选项即可【详解】函数f(x)=asinx+bcosx=周期T=2π由题意x=取得最小值,a,b∈R,ab≠0,∴f()=0不正确;x=取得最小值,那么+=就是相邻的对称中心,∴点(,0)不是函数f(x)的一个对称中心;因为x=取得最小值,根据正弦函数的性质可知,f(x)在是减函数故选D【点睛】本题考查三角函数的性质应用,排除法求解,考查转化思想以及计算能力6、A【解析】利用或,结合充分条件与必要条件的定义可得结果.详解】根据题意,由于或,因此可以推出,反之,不成立,因此“”是“”的充分而不必要条件,故选A.【点睛】判断充分条件与必要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.7、A【解析】分别求出选项的函数解析式,再利用奇函数的定义即可得选项.【详解】由题意可得,对于A,是奇函数,故A正确;对于B,不是奇函数,故B不正确;对于C,,其定义域不关于原点对称,所以不是奇函数,故C不正确;对于D,,其定义域不关于原点对称,不是奇函数,故D不正确.故选:A.8、B【解析】根据解析式得,进而得令,得为奇函数,,进而结合函数单调性求解即可.【详解】函数,定义域为,满足,所以,令,所以,所以奇函数,,函数在均为增函数,所以在为增函数,所以在为增函数,因为为奇函数,所以在为增函数,所以,解得.故选:B.9、C【解析】由时的解析式,可先求得不等式的解集.再根据偶函数性质,即可求得整个定义域内满足不等式的解集,即可确定整数解的个数.【详解】当时,,解得,所以;当时,,解得,所以.因为为偶函数,所以不等式的解集为.故整数的个数为8.故选:C【点睛】本题考查了不等式的解法,偶函数性质的应用,属于基础题.10、A【解析】由增函数的性质及定义域得对数不等式组,再对数函数性质可求解【详解】不等式即为,∵函数在区间上单调递增,∴,即,解得,∴实数的取值范围是,选A【点睛】本题考查函数的单调性应用,考查解函数不等式,解题时除用函数的单调性得出不等关系外,一定要注意函数的定义域的约束,否则易出错二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据三角函数的定义求出r即可.【详解】角的终边过点,,则,故答案为【点睛】本题主要考查三角函数值的计算,根据三角函数的定义是解决本题的关键.三角函数的定义将角的终边上的点的坐标和角的三角函数值联系到一起,.知道终边上的点的坐标即可求出角的三角函数值,反之也能求点的坐标.12、【解析】根据幂函数的定义,结合奇函数的定义进行求解即可.【详解】因为是幂函数,所以,或,当时,,因为,所以函数是偶函数,不符合题意;当时,,因为,所以函数是奇函数,符合题意,故答案为:13、【解析】令,解得,且恒成立,所以函数的图象恒过定点;故填.14、【解析】根据函数的对称性,利用,建立方程进行求解即可【详解】若关于对称,则,即,即,则,则,,当时,,故答案为:15、③【解析】对于①通过取特殊值即可排除,对于②③直接带入计算即可.【详解】当nA=1时,PA=0,故①错误;若PA=1,则nA=10,若PA=2,则nA=100,故②错误;B菌的个数为nB=5×104,∴,∴.又∵,∴故选③16、【解析】解方程,即可得解.【详解】当时,由,可得(舍)或;当时,由,可得.综上所述,函数零点的个数为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)x(2)函数fx(3)-2【解析】(1)解不等式4-x(2)根据奇偶性的定义直接判断即可;(3)根据题意,将问题转化为4-x2≤mx+5且mx+5>0【小问1详解】解:由题知4-x2>0所以函数fx=【小问2详解】解:函数为偶函数,证明如下:由(1)知函数定义域关于原点对称,所以f-x所以函数为偶函数.【小问3详解】解:因为fx≤log即log24-x所以4-x2≤mx+5且mx+5>0所以m≥-1x-x且m>由于-1x-x=-y=-5x在x∈0,2所以m≥-2且m≥-52,即所以实数m的取值范围是-2,+∞,最小值18、(1)g(x)=22x-2x+2,定义域为[0,1](2)最大值为-3,最小值为-4【解析】(1)根据函数,得到f(2x)和f(x+2)的解析式求解;再根据f(x)=2x的定义域是[0,3],由求g(x)的定义域;(2)由(1)得g(x)=22x-2x+2,设2x=t,t∈[1,2],转化为二次函数求解.【小问1详解】解:因为函数,所以f(2x)=22x,f(x+2)=2x+2,所以g(x)=f(2x)-f(x+2)=22x-2x+2,∵f(x)=2x的定义域是[0,3],∴,解得0≤x≤1,∴g(x)的定义域为[0,1]【小问2详解】由(1)得g(x)=22x-2x+2,设2x=t,则t∈[1,2],∴g(t)=t2-4t=,∴g(t)在[1,2]上单调递减,∴g(t)max=g(1)=-3,g(t)min=g(2)=-4∴函数g(x)的最大值为-3,最小值为-419、(1),;(2).【解析】正切的二倍角公式得,再由同角三角函数关系式即可得的值.先计算然后由角的范围即可确定角.【详解】,且,所以:故:,,,所以:,由于:所以:,所以:,,,,所以:【点睛】本题考查三角函数关系式的恒等变换,考查给值求角问题,通过求角的某种三角函数值来求角,在选取函数时,有以下原则:用已知三角函数值的角来表示未知角,(1)已知正切函数值,则选正切函数;(2)已知正弦、余弦函数值,则选正弦或余弦函数.若角的范围是,则选正弦、余弦皆可;若角的范围是,则选余弦较好;若角的范围为,则选正弦较好20、(1)详见解析(2)函数的对称轴为;对称中心为;单调递增区间为:【解析】(1)五点法作图;(2)整体代入求对称轴,对称中心,单调递增区间.【小问1详解】列表:0010-10020-20描点画图:【小问2详解】求对称轴:,故函数的对称轴为求对称中心:,故函数的对称中心为求单调递增区间:,故函数的单调递增区间为:21、(1)(2)详见解析【解析】(1)既可以利用奇函数的定义求得的值,也可以利用在处有意义的奇函数的性质求,但要注意证明该值使得函数是奇函数.(2)按照函数单调性定义法证明步骤证明即可.【详解】解:(1)解法一:因为函数是定义在上的奇函数,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年医院《病案信息学管理技术师》专业知识试题库及完整答案
- 2026年审计委员会会议议程协议
- 口罩车间医生培训课件
- 2026广东江门市江海区招聘中小学教辅人员8人备考题库(含答案详解)
- 2026北京中央民族大学非事业编制合同制职工招聘2人备考题库(第一批)及一套答案详解
- 2026上海中医药大学国际教育学院英语教师招聘1人备考题库及1套参考答案详解
- 开挖基坑施工方案(3篇)
- 2025云南昭通市检验检测院招聘2人备考题库及答案详解(夺冠系列)
- 2025四川成都东部新区(考核)招聘高层次教育人才5人备考题库及1套完整答案详解
- 2026山东事业单位统考济宁嘉祥县招聘34人备考题库及参考答案详解一套
- (二诊)绵阳市2023级高三第二次诊断考试地理试卷A卷+B卷(含答案)
- 金融行业客户身份识别管理办法
- 2026年及未来5年中国半导体热电系统行业市场全景监测及投资战略咨询报告
- 2026福建厦门市高崎出入境边防检查站招聘警务辅助人员30人考试参考试题及答案解析
- 抖音续火花合同里协议
- 河南豫能控股股份有限公司及所管企业2026届校园招聘127人笔试备考试题及答案解析
- 中医诊疗技术操作指南
- 2026年医院太平间服务外包合同
- 小学六年级英语2026年上学期语法填空综合题集
- 海洋电子信息产业现状与发展路径研究
- 2024-2025学年苏教版四年级数学上册 第二单元专练:经济问题和促销问题(买几送几)原卷版+解析
评论
0/150
提交评论