版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省临洮县第二中学2026届数学高二上期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的右焦点为,则正数的值是()A.3 B.4C.9 D.212.已知F是双曲线的右焦点,过F且垂直于x轴的直线交E于A,B两点,若E的渐近线上恰好存在四个点,,,,使得,则E的离心率的取值范围是()A. B.C. D.3.已知向量分别是直线的方向向量,若,则()A. B.C. D.4.如图,A,B,C三点不共线,O为平面ABC外一点,且平面ABC中的小方格均为单位正方形,,,则()A.1 B.C.2 D.5.在△ABC中,角A,B,C所对的边分别是a,b,c,若c=1,B=45°,cosA=,则b等于()A. B.C. D.6.在三棱锥中,平面,,,,Q是边上的一动点,且直线与平面所成角的最大值为,则三棱锥的外接球的表面积为()A. B.C. D.7.若点,在抛物线上,是坐标原点,若等边三角形的面积为,则该抛物线的方程是()A. B.C. D.8.函数的最小值是()A.3 B.4C.5 D.69.雅言传承文明,经典浸润人生.某市举办“中华经典诵写讲大赛”,大赛分为四类:“诵读中国”经典诵读大赛、“诗教中国”诗词讲解大赛、“笔墨中国”汉字书写大赛、“印记中国”学生篆刻大赛.某人决定从这四类比赛中任选两类参赛,则“诵读中国”被选中的概率为()A. B.C. D.10.在等差数列中,已知,则数列的前9项和为()A. B.13C.45 D.11711.如图,在空间四边形中,()A. B.C. D.12.总体由编号为的30个个体组成.利用所给的随机数表选取6个个体,选取的方法是从随机数表第1行的第3列和第4列数字开始,由左到右一次选取两个数字,则选出来的第5个个体的编号为()A.20 B.26C.17 D.03二、填空题:本题共4小题,每小题5分,共20分。13.直线l:y=-x+m与曲线有两个公共点,则实数m的取值范围是_______.14.点P(8,1)平分椭圆x2+4y2=4的一条弦,则这条弦所在直线的方程是_______.15.在区间上随机取1个数,则取到的数小于2的概率为___________.16.已知抛物线的焦点为F,A为抛物线C上一点.以F为圆心,FA为半径的圆交抛物线C的准线于B,D两点,A,F,B三点共线,且,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列的首项,(1)证明:数列是等比数列;(2)设且前项和为,求18.(12分)已知椭圆,离心率为,短半轴长为1(1)求椭圆C的方程;(2)已知直线,问:在椭圆C上是否存在点T,使得点T到直线l的距离最大?若存在,请求出这个最大距离;若不存在,请说明理由19.(12分)在△中,内角所对的边分别为,已知(1)求角的大小;(2)若的面积,求的值20.(12分)如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)[79.5,89.5)这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的众数、中位数、平均数是多少?21.(12分)如图,在三棱锥中,平面平面,且,(1)求证:;(2)求直线与所成角的余弦值22.(10分)某中学共有名学生,其中高一年级有名学生,为了解学生的睡眠情况,用分层抽样的方法,在三个年级中抽取了名学生,依据每名学生的睡眠时间(单位:小时),绘制出了如图所示的频率分布直方图.(1)求样本中高一年级学生人数及图中的值;(2)估计样本数据的中位数(保留两位小数);(3)估计全校睡眠时间超过个小时的学生人数.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由直接可得.【详解】由题知,所以,因为,所以.故选:A2、D【解析】由题意以AB为直径的圆M与双曲线E的渐近线有四个不同的交点,则必有,又当圆M经过原点时此时以AB为直径的圆M上与双曲线E的渐近线有三个不同的交点,不满足,从而得出答案.【详解】由题意,由得,双曲线的渐近线方程为所以,由,可知,,,在以AB为直径的圆M上,圆的半径为即以AB为直径的圆M与双曲线E的渐近线有四个不同的交点当圆M与渐近线相切时,圆心到渐近线的距离,则必有,即,则双曲线E的离心率,所以又当圆M经过原点时,,解得E的离心率为,此时以AB为直径圆M与双曲线E的渐近线有三个不同的交点,不满足条件.所以E的离心率的取值范围是.故选:D3、C【解析】由题意,得,由此可求出答案【详解】解:∵,且分别是直线的方向向量,∴,∴,∴,故选:C【点睛】本题主要考查向量共线的坐标表示,属于基础题4、B【解析】根据向量的线性运算,将向量表示为,再根据向量的数量积的运算进行计算可得答案,【详解】因为,所以=,故选:B.5、C【解析】先由cosA的值求出,进而求出,用正弦定理求出b的值.【详解】因为cosA=,所以,所以由正弦定理:,得:.故选:C6、C【解析】由平面,直线与平面所成角的最大时,最小,也即最小,,由此可求得,从而得,得长,然后取外心,作,取H为的中点,使得,则易得,求出的长即为外接球半径,从而可得面积【详解】三棱锥中,平面,直线与平面所成角为,如图所示;则,且的最大值是,,的最小值是,即A到的距离为,,,在中可得,又,,可得;取的外接圆圆心为,作,取H为的中点,使得,则易得,由,解得,,,,由勾股定理得,所以三棱锥的外接球的表面积是.【点睛】本题考查求球的表面积,解题关键是确定球的球心,三棱锥的外接球心在过各面外心且与此面垂直的直线上7、A【解析】根据等边三角形的面积求得边长,根据角度求得点的坐标,代入抛物线方程求得的值.【详解】设等边三角形的边长为,则,解得根据抛物线的对称性可知,且,设点在轴上方,则点的坐标为,即,将代入抛物线方程得,解得,故抛物线方程为故选:A8、D【解析】先判断函数的单调性,再利用其单调性求最小值【详解】由,得,因为,所以,所以在上单调递增,所以,故选:D9、B【解析】由已知条件得基本事件总数为种,符合条件的事件数为3中,由古典概型公式直接计算即可.【详解】从四类比赛中选两类参赛,共有种选择,其中“诵读中国”被选中的情况有3种,即“诵读中国”和“诗教中国”,“诵读中国”和“笔墨中国”,“诵读中国”和“印记中国”,由古典概型公式可得,故选:.10、C【解析】根据给定的条件利用等差数列的性质计算作答【详解】在等差数列中,因,所以.故选:C11、A【解析】利用空间向量加减法法则直接运算即可.【详解】根据向量的加法、减法法则得.故选:A.12、D【解析】根据题目要求选取数字,在30以内的正整数符合要求,不在30以内的不合要求,舍去,与已经选取过重复的舍去,找到第5个个体的编号.【详解】已知选取方法为从第一行的第3列和第4列数字开始,由左到右一次选取两个数字,所以选取出来的数字分别为12(符合要求),13(符合要求),40(不合要求),33(不合要求),20(符合要求),38(不合要求),26(符合要求),13(与前面重复,不合要求),89(不合要求),51(不合要求),03(符合要求),故选出来的第5个个体的编号为03.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】曲线表示圆的右半圆,结合的几何意义,得出实数m的取值范围.【详解】曲线表示圆的右半圆,当直线与相切时,,即,由表示直线的截距,因为直线l与曲线有两个公共点,由图可知,所以.故答案为:.14、【解析】结合点差法求得正确答案.【详解】椭圆方程可化为,设是椭圆上的点,是弦的中点,则,两式相减并化简得,即,所以弦所在直线方程为,即.故答案为:15、【解析】根据几何概型计算公式进行求解即可.【详解】设“区间上随机取1个数”,对应集合为,区间长度为3,“取到的数小于2”,对应集合为,区间长度为1,所以.故答案为:16、2【解析】求得抛物线的焦点和准线方程,由,,三点共线,推得,由三角形的中位线性质可得到准线的距离,可得的值【详解】抛物线的焦点为,,准线方程为,因为,,三点共线,可得为圆的直径,如图示:设准线交x轴于E,所以,则,由抛物线的定义可得,又是的中点,所以到准线的距离为,故答案为:2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)由已知变形得出,即可证得结论成立;(2)计算,利用并项求和法可求得.【小问1详解】证明:对任意的,,则,且,故数列为等比数列,且该数列的首项为,公比也为,故.【小问2详解】解:,所以,,因此,.18、(1);(2)存在,最大距离为.,理由见解析【解析】(1)根据离心率及短轴长求椭圆参数,即可得椭圆方程.(2)根据直线与椭圆的位置关系,将问题转为平行于直线且与椭圆相切的切线与直线最大距离,设直线方程联立椭圆方程根据求参数,进而判断点T的存在性,即可求最大距离.【小问1详解】由题设知:且,又,∴,故椭圆C的方程为.小问2详解】联立直线与椭圆,可得:,∴,即直线与椭圆相离,∴只需求平行于直线且与椭圆相切的切线与直线最大距离即为所求,令平行于直线且与椭圆相切的直线为,联立椭圆,整理可得:,∴,可得,当,切线为,其与直线距离为;当,切线为,其与直线距离为;综上,时,与椭圆切点与直线距离最大为.19、(1);(2)【解析】(1)由正弦定理,将条件中的边化成角,可得,进而可得的值;(2)由三角形面积公式可得,再由余弦定理可得,得最后结论试题解析:(1),又∴又得(2)由,∴又得,∴得考点:正弦定理;余弦定理【易错点睛】解三角形问题的两重性:①作为三角形问题,它必须要用到三角形的内角和定理,正弦、余弦定理及其有关三角形的性质,及时进行边角转化,有利于发现解题的思路;②它毕竟是三角变换,只是角的范围受到了限制,因此常见的三角变换方法和原则都是适用的,注意“三统一”(即“统一角、统一函数、统一结构”)是使问题获得解决的突破口20、(1)0.25,15;(2)众数为74.5,中位数为72.8,平均分为70.5.【解析】(1)直接利用频率和频数公式求解;(2)利用频率分布直方图的公式求众数、中位数、平均数.【详解】(1)频率=(89.5-79.5)×0.025=0.25;频数=60×0.25=15.(2)[69.5,79.5)一组的频率最大,人数最多,则众数为74.5,左边三个矩形的面积和为0.4,左边四个矩形的面积和为0.7,所以中位数在第4个矩形中,设中位数为,所以中位数为72.8.平均分为44.5×0.1+54.5×0.15+64.5×0.15+74.5×0.3+84.5×0.25+94.5×0.05=70.521、(1)证明见解析;(2).【解析】(1)过点作交的延长线于点,连接,由,,证出平面,即可证出.(2)以为原点,的方向分别为轴正方向,建立空间直角坐标系,写出相应点的坐标,利用,即可得到答案.【小问1详解】过点作交的延长线于点,连接,因为,所以,又因为,所以,所以,即,.因为,所以平面,因为平面,所以【小问2详解】因为平面平面,平面平面,所以平面,以为原点,的方向分别为轴正方向,建立如图所示的空间直角坐标系,则,可得,因为,所以直线与所成角的余弦值为22、(1)样本中高一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (能源化工行业)化工原理考试题及答案
- 基于支持向量机的校园AI社团活动影响力分类模型构建课题报告教学研究课题报告
- 2026统计学课后试题及答案
- 职业培训学校消防安全管理制度(5篇)
- 2026年教育科技VR实训系统报告及未来五至十年职业教育报告
- 2026上半年贵州事业单位联考国家矿山安全监察局贵州局直属事业单位招聘4人备考题库及一套答案详解
- 2026年建筑工程师中级专业能力模拟卷
- 2026年国际贸易从业者关税与贸易政策考试题
- 2026年农业灌溉科技创新报告
- 2026吉林市化工医院招聘高层次人才备考题库及完整答案详解1套
- (2025年)电力交易员练习试题附答案
- 2026年咨询工程师现代咨询方法与实务模拟测试含答案
- 甘肃省酒泉市2025-2026学年高一上学期期末语文试题(解析版)
- GB/T 3634.1-2025氢气第1部分:工业氢
- 2025年公务员(省考)测试卷附答案详解
- JJG 499-2021 精密露点仪检定规程
- T-CPQS A0011-2022 二手车车况检测及评估通则
- 吸毒的危害性后果
- 2025年湖南邵阳经开贸易投资有限公司招聘12人笔试考试参考试题及答案解析
- 白内障手术术前准备和术后护理流程
- 多动症儿童在感统训练
评论
0/150
提交评论