版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
郑州市2026届数学高二上期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则()A. B.C. D.2.已知四面体,所有棱长均为2,点E,F分别为棱AB,CD的中点,则()A.1 B.2C.-1 D.-23.若圆与圆外切,则()A. B.C. D.4.如图,正方形与矩形所在的平面互相垂直,在上,且平面,则M点的坐标为()A. B.C. D.5.过点且与抛物线只有一个公共点的直线有()A.1条 B.2条C.3条 D.0条6.已知数列的前项和为,当时,()A.11 B.20C.33 D.357.已知向量与平行,则()A. B.C. D.8.已知公比不为1的等比数列,其前n项和为,,则()A.2 B.4C.5 D.259.下列导数运算正确的是()A. B.C. D.10.已知数列是等比数列,且,则的值为()A.3 B.6C.9 D.3611.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,,一辆车从甲地到乙地,恰好遇到2个红灯的概率为()A. B.C. D.12.已知直线过点,且与直线垂直,则直线的方程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.分别过椭圆的左、右焦点、作两条互相垂直的直线、,它们的交点在椭圆的内部,则椭圆的离心率的取值范围是________14.在正方体中,二面角的大小为__________(用反三角表示)15.椭圆的左、右焦点分别为,,过焦点的直线交该椭圆于两点,若的内切圆面积为,两点的坐标分别为,,则的面积________,的值为________.16.已知p:≤0,q:4x+2x-m≤0,若p是q的充分条件,则实数m的取值范围是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的二项展开式中所有项的二项式系数之和为,(1)求的值;(2)求展开式的所有有理项(指数为整数),并指明是第几项18.(12分)已知.(1)当,时,求中含项的系数;(2)用、表示,写出推理过程19.(12分)已知几何体中,平面平面,是边长为4的菱形,,是直角梯形,,,且(1)求证:;(2)求平面与平面所成角的余弦值20.(12分)已知点P到点的距离比它到直线的距离小1.(1)求点P的轨迹方程;(2)点M,N在点P的轨迹上且位于x轴的两侧,(其中O为坐标原点),求面积的最小值.21.(12分)已知函数.(1)当时,求曲线在点处的切线方程;(2)试讨论函数的单调性.22.(10分)已知,两地的距离是.根据交通法规,,两地之间的公路车速(单位:)应满足.假设油价是7元/,以的速度行驶时,汽车的耗油率为,当车速为时,汽车每小时耗油,司机每小时的工资是91元.(1)求的值;(2)如果不考虑其他费用,当车速是多少时,这次行车的总费用最低?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设,计算出、的值,利用平方差公式可求得结果.【详解】设由已知可得,,因此,.故选:D.2、D【解析】在四面体中,取定一组基底向量,表示出,,再借助空间向量数量积计算作答.【详解】四面体所有棱长均为2,则向量不共面,两两夹角都为,则,因点E,F分别为棱AB,CD的中点,则,,,所以.故选:D3、C【解析】求得两圆的圆心坐标和半径,结合两圆相外切,列出方程,即可求解.【详解】由题意,圆与圆可得,,因为两圆相外切,可得,解得故选:C.4、A【解析】设点的坐标为,由平面,可得出,利用空间向量数量积为0求得、的值,即可得出点的坐标.【详解】设点的坐标为,,,,,则,,,平面,即,所以,,解得,所以,点的坐标为,故选:A.5、B【解析】过的直线的斜率存在和不存在两种情况分别讨论即可得出答案.【详解】易知过点,且斜率不存在的直线为,满足与抛物线只有一个公共点.当直线的斜率存在时,设直线方程为,与联立得,当时,方程有一个解,即直线与扰物线只有一个公共点.故满足题意的直线有2条.故选:B6、B【解析】由数列的性质可得,计算可得到答案.【详解】由题意,.故答案为B.【点睛】本题考查了数列的前n项和的性质,属于基础题.7、D【解析】根据两向量平行可求得、的值,即可得出合适的选项.【详解】由已知,解得,,则.故选:D.8、B【解析】设等比数列的公比为,根据求得,从而可得出答案.【详解】解:设等比数列的公比为,则,所以,则.故选:B.9、B【解析】利用基本初等函数的导数和复合函数的导数,依次分析即得解【详解】选项A,,错误;选项B,,正确;选项C,,错误;选项D,,错误故选:B10、C【解析】应用等比中项的性质有,结合已知求值即可.【详解】由等比数列的性质知:,,,所以,又,所以.故选:C11、B【解析】利用相互独立事件概率乘法公式和互斥事件概率加法公式直接求解【详解】由各路口信号灯工作相互独立,可得某人从甲地到乙地恰好遇到2次红灯的概率:故选:B12、D【解析】由题意设直线方程为,然后将点坐标代入求出,从而可求出直线方程【详解】因为直线与直线垂直,所以设直线方程为,因为直线过点,所以,得,所以直线方程为,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据条件可知以为直径的圆在椭圆的内部,可得,再根据,即可求得离心率的取值范围.【详解】根据条件可知,以为直径的圆与椭圆没有交点,即,即,,即.故填:.【点睛】本题考查椭圆离心率的取值范围,求椭圆离心率是常考题型,涉及的方法包含1.根据直接求,2.根据条件建立关于的齐次方程求解,3.根据几何关系找到的等量关系求解.14、【解析】作出二面角的平面角,并计算出二面角的大小.【详解】设,画出图像如下图所示,由于,所以平面,所以,所以是二面角的平面角.所以.所以二面角的大小为.故答案为:15、①.6②.3【解析】由题意得,由内切圆面积为可得其半径,根据焦点三角形面积公式可得第一空答案,结合面积公式和等面积法建立等式化简即可.【详解】解:由得由内切圆面积为可得其半径,设其内切圆圆心为则又所以.故答案为:6;3【点睛】椭圆中常用面积公式:(1)(表示边上的高);(2);(3)(为三角形内切圆半径);(4).16、m≥6【解析】分别求出p,q成立的等价条件,利用p是q的充分条件,转为当0<x≤1时,m大于等于的最大值,求出最值即可确定m的取值范围【详解】由,得0<x≤1,即p:0<x≤1由4x+2x﹣m≤0得4x+2x≤m因为,要使p是q的充分条件,则当0<x≤1时,m大于等于的最大值,令,则在上单调递增,故当时取到最大值6,所以m≥6故答案为:m≥6【点睛】本题主要考查充分条件和必要条件的应用,考查函数的最值,考查转化的思想,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由二项式系数和公式可得答案;(2)求出的通项,利用的指数为整数可得答案.【小问1详解】的二项展开式中所有项的二项式系数之和,所以.【小问2详解】,因此时,有理项,有理项是第一项和第七项.18、(1)(2),过程见解析【解析】(1)写出函数的解析式,利用二项式定理可求得函数中含项的系数;(2)利用错位相减法化简函数的解析式,求出解析式中含项的系数,再结合组合数公式化简可得结果.【小问1详解】解:当,时,,的展开式通项为,此时,函数中含项的系数之和为.【小问2详解】解:因为,①则,②①②得,所以,,而为中含项的系数,而函数中含项的系数也可视为中含项的系数,故,且,故.19、(1)证明见解析;(2).【解析】(1)根据菱形的性质,结合面面垂直的性质定理、线面垂直的判定定理和性质进行证明即可;(2)建立空间直角坐标系,根据空间向量夹角公式进行求解即可.【详解】(1)证明:连接,交于点,∵四边形是菱形,∴,∵平面平面,平面平面,,∴平面,∵平面,∴,又,、平面,∴平面,∵平面,∴(2)解:取的中点,连接,∵是边长为4的菱形,,∴,,以为原点,,,所在直线分别为,,轴建立如图所示的空间直角坐标系,则,,,,∴,,设平面的法向量为,则,即,令,则,,∴,同理可得,平面的一个法向量为,∴,由图知,平面与平面所成角为锐角,故平面与平面所成角余弦值为20、(1);(2).【解析】(1)根据给定条件可得点P到点的距离等于它到直线的距离,再由抛物线定义即可得解.(2)由(1)设出点M,N的坐标,再结合给定条件及三角形面积定理列式,借助均值不等式计算作答.【小问1详解】因点P到点的距离比它到直线的距离小1,显然点P与F在直线l同侧,于是得点P到点的距离等于它到直线的距离,则点P的轨迹是以F为焦点,直线为准线的抛物线,所以点P的轨迹方程是.【小问2详解】由(1)设点,,且,因,则,解得,S,当且仅当,即时取“=”,所以面积的最小值为.【点睛】思路点睛:圆锥曲线中的几何图形面积范围或最值问题,可以以直线的斜率、横(纵)截距、图形上动点的横(纵)坐标为变量,建立函数关系求解作答.21、(1)(2)详见解析.【解析】(1)由,求导,得到,写出切线方程;(2)求导,再分,,讨论求解.【小问1详解】解:因为,所以,则,所以,所以曲线在点处的切线方程是,即;【小问2详解】因为,所以,当时,成立,则在上递减;当时,令,得,当时,,当时,,所以在上递减,在上递增;综上:当时,在上递减
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- c2安全考试题库及答案
- 大学生心理知识竞赛题及答案
- 阿斯利康(中国)校招面试题及答案
- 2026字节跳动秋招面笔试题及答案
- 初级仓管员考试题及答案
- 未来五年动物病毒检验服务企业ESG实践与创新战略分析研究报告
- 中国矿产资源集团2026校园招聘和所属单位社会招聘参考题库必考题
- 会昌县2025年县直事业单位公开选调一般工作人员参考题库必考题
- 华蓥市总工会关于公开招聘工会社会工作者的备考题库附答案
- 吉安市低空经济发展促进中心公开选调工作人员考试备考题库必考题
- 2025年公务员考试题库(含答案)
- 2025中国医学科学院北京协和医学院招聘26人备考题库及答案详解(夺冠系列)
- 2026年维修工岗位面试题库含答案
- 2026年温州市1.5模高三语文试题作文题目解析及3篇范文:打扮自己与打扮大地
- 2026年湘西民族职业技术学院单招职业技能笔试参考题库含答案解析
- 2025-2026学年教科版(新教材)小学科学三年级下册《昆虫的一生》教学设计
- 2025年12月福建厦门市鹭江创新实验室管理序列岗位招聘8人参考题库附答案
- 化工工艺安全管理与操作手册
- 规范外汇交易管理制度
- 2026年美丽中国全国国家版图知识竞赛考试题库(含答案)
- 高考英语读后续写技巧总结
评论
0/150
提交评论