版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省六盘水市钟山区六盘水七中2026届高一数学第一学期期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,,,则有A. B.C. D.2.下列表示正确的是A.0∈N B.∈NC.–3∈N D.π∈Q3.已知则的值为()A. B.2C.7 D.54.已知平面α和直线l,则α内至少有一条直线与l()A.异面 B.相交C.平行 D.垂直5.已知函数的图象的一部分如图1所示,则图2中的函数图象对应的函数解析式为()A. B.C. D.6.直线L将圆平分,且与直线平行,则直线L的方程是A.BC.D.7.已知向量(2,3),(x,2),且⊥,则|23|=()A.2 B.C.12 D.138.用二分法求方程的近似解时,可以取的一个区间是()A. B.C. D.9.函数的零点在A. B.C. D.10.“是”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.已知集合,,且,则实数的取值范围是__________12.已知,函数,若函数有两个零点,则实数k的取值范围是________13.已知直线,互相平行,则__________.14.________15.已知函数恰有2个零点,则实数m的取值范围是___________.16.若存在常数和,使得函数和对其公共定义域上的任意实数都满足:和恒成立,则称此直线为和的“隔离直线”.已知函数,,若函数和之间存在隔离直线,则实数的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数中角的终边经过点,若时,的最小值为.(1)求函数的解析式;(2)求函数的单调递增区间.18.已知函数是定义在R上的奇函数(1)用定义法证明为增函数;(2)对任意,都有恒成立,求实数k的取值范围19.已知函数.(1)判断在区间上的单调性,并用定义证明;(2)判断的奇偶性,并求在区间上的值域.20.如图,在几何体ABCDEF中,平面平面ABFE.正方形ABFE的边长为2,在矩形ABCD中,(1)证明:;(2)求点B到平面ACF的距离21.已知函数是偶函数(其中为自然对数的底数,…)(1)求的值;(2)若方程在区间上有实数根,求实数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据指数函数和对数函数的单调性分别将与作比较,从而得到结果.【详解】本题正确选项:【点睛】本题考查根据指数函数、对数函数单调性比较大小的问题,常用方法是采用临界值的方式,通过与临界值的大小关系得到所求的大小关系.2、A【解析】根据自然数集以及有理数集的含义判断数与集合关系.【详解】N表示自然数集,在A中,0∈N,故A正确;在B中,,故B错误;在C中,–3∉N,故C错误;Q表示有理数集,在D中,π∉Q,故D错误故选A【点睛】本题考查自然数集、有理数集的含义以及数与集合关系判断,考查基本分析判断能力,属基础题.3、B【解析】先算,再求【详解】,故选:B4、D【解析】若直线l∥α,α内至少有一条直线与l垂直,当l与α相交时,α内至少有一条直线与l垂直当l⊂α,α内至少有一条直线与l垂直故选D5、B【解析】利用三角函数的图象变换规律可求得结果.【详解】观察图象可知,右方图象是由左方图象向左移动一个长度单位后得到的图象,再把的图象上所有点的横坐标缩小为原来的(纵坐标不变)得到的,所以右图的图象所对应的解析式为.故选:B6、C【解析】圆的圆心坐标,直线L将圆平分,所以直线L过圆的圆心,又因为与直线平行,所以可设直线L的方程为,将代入可得所以直线L的方程为即,所以选C考点:求直线方程7、D【解析】由,可得,由向量加法可得,再结合向量模的运算即可得解.【详解】解:由向量(2,3),(x,2),且,则,即,即,所以,所以,故选:D.【点睛】本题考查了向量垂直的坐标运算,重点考查了向量加法及模的运算,属基础题.8、B【解析】构造函数并判断其单调性,借助零点存在性定理即可得解.【详解】,令,在上单调递增,并且图象连续,,,在区间内有零点,所以可以取的一个区间是.故选:B9、B【解析】利用零点的判定定理检验所给的区间上两个端点的函数值,当两个函数值符号相反时,这个区间就是函数零点所在的区间.【详解】函数定义域为,,,,,因为,根据零点定理可得,在有零点,故选B.【点睛】本题考查函数零点的判定定理,本题解题的关键是看出函数在所给的区间上对应的函数值的符号,此题是一道基础题.10、B【解析】先化简两个不等式,再去判断二者间的逻辑关系即可解决.【详解】由可得;由可得则由不能得到,但由可得故“是”的必要不充分条件.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】,是的子集,故.【点睛】本题主要考查集合的研究对象和交集的概念,考查指数不等式的求解方法,考查二次函数的值域等知识.对于一个集合,首先要确定其研究对象是什么元素,是定义域还是值域,是点还是其它的元素.二次函数的值域主要由开口方向和对称轴来确定.在解指数或对数不等式时,要注意底数对单调性的影响.12、【解析】由题意函数有两个零点可得,得,令与,作出函数与的图象如图所示:由图可知,函数有且只有两个零点,则实数的取值范围是.故答案为:.【点睛】本题考查分段函数的应用,函数零点的判断等知识,解题时要灵活应用数形结合思想13、【解析】由两直线平行的充要条件可得:,即:,解得:,当时,直线为:,直线为:,两直线重合,不合题意,当时,直线为:,直线为:,两直线不重合,综上可得:.14、【解析】根据对数运算、指数运算和特殊角的三角函数值,整理化简即可.【详解】.故答案为:.15、【解析】讨论上的零点情况,结合题设确定上的零点个数,根据二次函数性质求m的范围.【详解】当时,恒有,此时无零点,则,∴要使上有2个零点,只需即可,故有2个零点有;当时,存在,此时有1个零点,则,∴要使上有1个零点,只需即可,故有2个零点有;综上,要使有2个零点,m的取值范围是.故答案为:.16、【解析】由已知可得、恒成立,可求得实数的取值范围.【详解】因为函数和之间存在隔离直线,所以,当时,可得对任意的恒成立,则,即,当时,可得对恒成立,令,则有对恒成立,所以或,解得或,综上所述,实数的取值范围是.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2),【解析】(1)根据角的终边经过点求,再由题意得周期求即可;(2)根据正弦函数的单调性求单调区间即可.【小问1详解】因为角的终边经过点,所以,若时,的最小值为可知,∴【小问2详解】令,解得故单调递增区间为:,18、(1)证明见解析(2)【解析】(1)根据函数单调性定义及指数函数的单调性与值域即可证明;(2)由已知条件,利用函数的奇偶性和单调性,可得对恒成立,然后分离参数,利用基本不等式求出最值即可得答案.【小问1详解】证明:设,则,由,可得,即,又,,所以,即,则在上为增函数;【小问2详解】解:因为任意,都有恒成立,且函数是定义在R上的奇函数,所以对恒成立,又由(1)知函数在上为增函数,所以对恒成立,由,有,所以对恒成立,设,由递减,可得,所以,当且仅当时取得等号,所以,即的取值范围是.19、(1)函数在区间上单调递增,证明见解析(2)函数为奇函数,在区间上的值域为【解析】(1)利用定义法证明函数单调性;(2)先得到定义域关于原点对称,结合得到函数为奇函数,利用第一问的单调性求出在区间上的值域.【小问1详解】在区间上单调递增,证明如下:,,且,有.因为,,且,所以,.于是,即.故在区间上单调递增.【小问2详解】的定义域为.因为,所以为奇函数.由(1)得在区间上单调递增,结合奇偶性可得在区间上单调递增.又因为,,所以在区间上的值域为.20、(1)证明见解析;(2)【解析】(1)连接BE,证明AF⊥平面BEC即可;(2)由等体积即可求点B到平面ACF的距离【小问1详解】连接BE,平面平面,且平面平面,又在矩形中,有,平面,平面,,在正方形中有,且,平面平面,平面,;【小问2详解】设点到平面的距离为,由已知有,,由(1)知:平面,平面,,从而可得:,,在等腰中,底边上的高为:,,由得,,则,即点到平面的距离为21、(1);(2)【解析】(1)由偶函数的定义可得恒成立,即可求出值;(2)由题意可分离参数得出有解,求出的值域即可.【详解】(1)是偶函数,恒成立,,解得;(2)由(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 标准光盘制作合同范本模板
- 中学英语听说教学设计及课堂指导
- 野生动物保护人工繁育操作规范
- 四年级语文单元测试题集
- 企业员工岗位培训课程体系设计
- 可持续材料替代技术在新型产业中的发展研究
- 2026年城市智慧交通系统分析方案
- 湘潭渔政行动实施方案公示
- 基金净值跟踪工作方案
- 志愿项目工作方案
- 2026年包头职业技术学院高职单招职业适应性考试模拟试题含答案解析
- 2026年XX医院儿科护理工作计划
- 液冷系统防漏液和漏液检测设计研究报告
- 2025-2026学年贵州省安顺市多校高一(上)期末物理试卷(含答案)
- 呼吸机相关肺炎预防策略指南2026
- 妊娠期缺铁性贫血中西医结合诊疗指南-公示稿
- 北京市2025年七年级上学期期末考试数学试卷三套及答案
- 2026年上海理工大学单招职业适应性测试题库附答案
- TCEC电力行业数据分类分级规范-2024
- 建设用地报批培训课件
- 骆驼的养殖技术与常见病防治
评论
0/150
提交评论