版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
西藏林芝第二高级中学2026届高二数学第一学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线上点的横坐标为4,则到抛物线焦点的距离等于()A.12 B.10C.8 D.62.在中,已知,则的形状是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.正三角形3.设命题,则为()A. B.C. D.4.椭圆()的右顶点是抛物线的焦点,且短轴长为2,则该椭圆方程为()A. B.C. D.5.数列是等比数列,是其前n项之积,若,则的值是()A.1024 B.256C.2 D.5126.若数列满足,则数列的通项公式为()A. B.C. D.7.双曲线的左右焦点分别是,,直线与双曲线在第一象限的交点为,在轴上的投影恰好是,则双曲线的离心率是()A. B.C. D.8.已知长方体的底面ABCD是边长为4的正方形,长方体的高为,则与对角面夹角的正弦值等于()A. B.C. D.9.已知双曲线的左、右焦点分别为,,为坐标原点,为双曲线在第一象限上的点,直线,分别交双曲线的左,右支于另一点,,若,且,则双曲线的离心率为()A. B.3C.2 D.10.设是等差数列的前项和,已知,,则等于()A. B.C. D.11.国际冬奥会和残奥会两个奥运会将于2022年在北京召开,这是我国在2008年成功举办夏季奥运会之后的又一奥运盛事.某电视台计划在奥运会期间某段时间连续播放5个广告,其中3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且2个奥运宣传广告不能相邻播放,则不同的播放方式有()A.120种 B.48种C.36种 D.18种12.已知点到直线的距离为1,则m的值为()A.或 B.或15C.5或 D.5或15二、填空题:本题共4小题,每小题5分,共20分。13.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为____________.14.已知双曲线C的方程为,,,双曲线C上存在一点P,使得,则实数a的最大值为___________.15.以下数据为某校参加数学竞赛的名同学的成绩:,,,,,,,,,,,,,,,,,,,.则这人成绩的第百分位数可以是______16.若“”是真命题,则实数的最小值为_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知正项等差数列满足:,且,,成等比数列(1)求的通项公式;(2)设的前n项和为,且,求的前n项和18.(12分)如图,在长方体中,,点E在棱上运动(1)证明:;(2)当E为棱的中点时,求直线与平面所成角的正弦值;(3)等于何值时,二面角的大小为?19.(12分)已知等差数列满足(1)求的通项公式;(2)设,求数列的前n项和20.(12分)已知函数(1)求函数在区间上的最大值和最小值;(2)求出方程的解的个数21.(12分)设等差数列的前项和为,已知,.(1)求数列的通项公式;(2)求数列的前项和.22.(10分)为了讴歌中华民族实现伟大复兴的奋斗历程,增进学生对中国共产党的热爱,某学校举办了一场党史竞赛活动,共有名学生参加了此次竞赛活动.为了解本次竞赛活动的成绩,从中抽取了名学生的得分(得分均为整数,满分为分)进行统计,所有学生的得分都不低于分,将这名学生的得分进行分组,第一组,第二组,第三组,第四组(单位:分),得到如下的频率分布直方图(1)求图中的值,估计此次竞赛活动学生得分的中位数;(2)根据频率分布直方图,估计此次竞赛活动得分的平均值.若对得分不低于平均值的同学进行奖励,请估计在参赛的名学生中有多少名学生获奖
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据焦半径公式即可求出【详解】因为,所以,所以故选:C2、B【解析】利用诱导公式、两角和的正弦公式化简已知条件,由此判断出三角形的形状.【详解】由,得,得,由于,所以,所以.故选:B3、D【解析】利用含有一个量词的命题的否定的定义判断.【详解】因为命题是全称量词命题,所以其否定是存在量词命题,即,故选:D4、A【解析】求得抛物线的焦点从而求得,再结合题意求得,即可写出椭圆方程.【详解】因为抛物线的焦点坐标为,故可得;又短轴长为2,故可得,即;故椭圆方程为:.故选:.5、D【解析】设数列的公比为q,由已知建立方程求得q,再利用等比数列的通项公式可求得答案.【详解】解:因为数列是等比数列,是其前n项之积,,设数列的公比为q,所以,解得,所以,故选:D.6、D【解析】由,分两步,当求出,当时得到,两式作差即可求出数列的通项公式;【详解】解:因为①,当时,,当时②,①②得,所以,当时也成立,所以;故选:D7、D【解析】根据题意的到,,代入到双曲线方程,解得,即,则,即,即,求解方程即可得到结果.【详解】设原点为,∵直线与双曲线在第一象限的交点在轴上的投影恰好是,∴,且,∴,将代入到双曲线方程,可得,解得,即,则,即,即,解得(舍负),故.故选:D.8、C【解析】建立空间直角坐标系,结合空间向量的夹角坐标公式即可求出线面角的正弦值.【详解】连接,建立如图所示的空间直角坐标系∵底面是边长为4的正方形,,∴,,,因为,,且,所以平面,∴,平面的法向量,∴与对角面所成角的正弦值为故选:C.9、D【解析】由双曲线的定义可设,,由平面几何知识可得四边形为平行四边形,三角形,用余弦定理,可得,的方程,再由离心率公式可得所求值【详解】由双曲线的定义可得,由,可得,,结合双曲线性质可以得到,而,结合四边形对角线平分,可得四边形为平行四边形,结合,故,对三角形,用余弦定理,得到,结合,可得,,,代入上式子中,得到,即,结合离心率满足,即可得出,故选:D【点睛】本题考查求双曲线的离心率,熟记双曲线的简单性质即可,属于常考题型.10、C【解析】依题意有,解得,所以.考点:等差数列的基本概念.【易错点晴】本题主要考查等差数列的基本概念.在解有关等差数列的问题时可以考虑化归为和等基本量,通过建立方程(组)获得解.即等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量、,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算11、C【解析】先考虑最后位置必为奥运宣传广告,再将另一奥运广告插入3个商业广告之间,最后对三个商业广告全排列,即可求解.【详解】先考虑最后位置必为奥运宣传广告,有种,另一奥运广告插入3个商业广告之间,有种;再考虑3个商业广告的顺序,有种,故共有种.故选:C.12、D【解析】利用点到直线距离公式即可得出.【详解】解:点到直线的距离为1,解得:m=15或5故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、160【解析】∵某个年级共有980人,要从中抽取280人,∴抽取比例为,∴此样本中男生人数为,故答案为160.考点:本题考查了分层抽样的应用点评:掌握分层抽样的概念是解决此类问题的关键,属基础题14、2【解析】设出,根据条件推出在圆上运动,根据题意要使双曲线和圆有交点,则得答案.【详解】设点,由得:,所以,化简得:,即满足条件的点在圆上运动,又点存在于上,故双曲线与圆有交点,则,即实数a的最大值为2,故答案为:215、【解析】利用百分位数的求法直接求解即可.【详解】解:将所给数据按照从小到大的顺序排列:,,,,,,,,,,,,,,,,,,,.数据量,∵是整数,∴故答案为:.16、1【解析】若“”是真命题,则大于或等于函数在的最大值因为函数在上为增函数,所以,函数在上的最大值为1,所以,,即实数的最小值为1.所以答案应填:1.考点:1、命题;2、正切函数的性质.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用等差数列的通项公式结合条件即求;(2)利用条件可得,然后利用错位相减法即求.【小问1详解】设等差数列公差为d,由得,即,化简得,又,,成等比数列,则,即,将代入上式得,化简得,解得或-2(舍去),则,所以【小问2详解】∵,当时,,当时,,符合上式,则,所以,令,则,,∴,化简得综上,的前n项和18、(1)证明见解析;(2);(3).【解析】(1)连接、,长方体、线面垂直的性质有、,再根据线面垂直的判定、性质即可证结论.(2)连接,由已知条件及勾股定理可得、,即可求、,等体积法求到面的距离,又直线与面所成角即为与面所成角,即可求线面角的正弦值.(3)由题设易知二面角为,过作于,连接,可得二面角平面角为,令,由长方体的性质及勾股定理构造方程求即可.【小问1详解】由题设,连接、,又长方体中,∴为正方形,即,又面,面,即,∵,面,∴面,而面,即.【小问2详解】连接,由E为棱的中点,则,∴,又,故,∴,又,,故,则,由,若到面的距离为,又,,∴,可得,又,∴直线与面所成角即为与面所成角为,故.【小问3详解】二面角大小为,即二面角为,由长方体性质知:面,面,则,过作于,连接,又,∴面,则二面角平面角为,∴,令,则,故,而,,∴,∴,整理得,解得.∴时,二面角的大小为.19、(1)(2)【解析】(1)设等差数列的公差为d,由题意得列出方程组,可求得的值,代入公式,即可得答案.(2)由(1)可得,利用等比数列的定义,可证数列为等比数列,结合前n项和公式,即可得答案.【小问1详解】设等差数列的公差为d,由题意得,解得,所以通项公式【小问2详解】由(1)可得,,又,所以数列是以4为首项,4为公比的等比数列,所以20、(1)f(x)的最大值为7,最小值为-33;(2)见解析.【解析】(1)求函数f(x)的导数,列表求其单调性即可;(2)求出函数f(x)的极值即可.【小问1详解】023+-+f(-2)=-33↗f(0)=7↘f(2)=-1↗f(3)=7∴f(x)的最大值为7,最小值为-33;【小问2详解】02+-+↗f(0)=7↘f(2)=-1↗当a<-1或a>7时,方程有一个根;当a=-1或7时,方程有两个根;当-1<a<7时,方程有三个根.21、(1)(2)【解析】(1)根据已知条件求得等差数列的首项和公差,由此求得.(2)利用裂项求和法求得.【小问1详解】设等差数列的公差为,则,解得,.∴.【小问2详解】由(1)知.∴.∴.22、(1),中位数为;(2)得分的平均值为,估计有260名学生获奖.【解析】(1)根据给定的频率分布直方图,利用各小矩形面积和为1计算得值;再由在中位数两侧所对小矩形面积相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 成语考试真题及答案
- bim应用案例分析考试题库及答案
- 疑难病例讨论制度题库(含答案)
- 技术研发经理招聘笔试题及解答(某世界500强集团)附答案
- 人文考试试题附答案详解
- 医院感染知识竞赛试题(附答案)
- 装配钳工高级模拟试题含参考答案
- 2025年主管护师考试试题与答案
- 保险公估人考试真题题库及答案
- 广东初中升学试题及答案
- 碧桂园资金池管理制度
- 小学文言文重点字词解释梳理
- 交通船闸大修工程质量检验规范
- GB/T 2879-2024液压传动液压缸往复运动活塞和活塞杆单向密封圈沟槽的尺寸和公差
- 福建省厦门市2023-2024学年高二上学期期末考试英语试题(解析版)
- 高脂血症性急性胰腺炎教学查房课件
- 厦门高容纳米新材料科技有限公司高容量电池负极材料项目环境影响报告
- 部编版语文八年级下册第6课《被压扁的沙子》一等奖创新教案
- 当代艺术赏析课件
- GB/T 12789.1-1991核反应堆仪表准则第一部分:一般原则
- GB/T 12719-2021矿区水文地质工程地质勘查规范
评论
0/150
提交评论